RESULTS: Two individual intraspecific linkage maps consisting of DArTseq markers were constructed in two bambara groundnut (2n = 2x = 22) segregating populations: 1) The genetic map of Population IA was derived from F2lines (n = 263; IITA686 x Ankpa4) and covered 1,395.2 cM across 11 linkage groups; 2) The genetic map of Population TD was derived from F3lines (n = 71; Tiga Nicuru x DipC) and covered 1,376.7 cM across 11 linkage groups. A total of 96 DArTseq markers from an initial pool of 142 pre-selected common markers were used. These were not only polymorphic in both populations but also each marker could be located using the unique sequence tag (at selected stringency) onto the common bean, adzuki bean and mung bean genomes, thus allowing the sequenced genomes to be used as an initial 'pseudo' physical map for bambara groundnut. A good correspondence was observed at the macro synteny level, particularly to the common bean genome. A test using the QTL location of an agronomic trait in one of the bambara groundnut maps allowed the corresponding flanking positions to be identified in common bean, mung bean and adzuki bean, demonstrating the possibility of identifying potential candidate genes underlying traits of interest through the conserved syntenic physical location of QTL in the well annotated genomes of closely related species.
CONCLUSIONS: The approach of adding pre-selected common markers in both populations before genetic map construction has provided a translational framework for potential identification of candidate genes underlying a QTL of trait of interest in bambara groundnut by linking the positions of known genetic effects within the underutilised species to the physical maps of other well-annotated legume species, without the need for an existing whole genome sequence of the study species. Identifying the conserved synteny between underutilised species without complete genome sequences and the genomes of major crops and model species with genetic and trait data is an important step in the translation of resources and information from major crop and model species into the minor crop species. Such minor crops will be required to play an important role in future agriculture under the effects of climate change.
METHODS: DNA methylation profiles (Illumina Infinium® HumanMethylation450 BeadChip) from 1941 individuals from four population-based European cohorts were analysed in relation to body mass index, waist circumference, waist-hip and waist-height ratio within a meta-analytical framework. In a subset of these individuals, data on genome-wide gene expression level, biomarkers of glucose and lipid metabolism were also available. Validation of methylation markers associated with all adiposity measures was performed in 358 individuals. Finally, we investigated the association of obesity-related methylation marks with breast, colorectal cancer and myocardial infarction within relevant subsets of the discovery population.
RESULTS: We identified 40 CpG loci with methylation levels associated with at least one adiposity measure. Of these, one CpG locus (cg06500161) in ABCG1 was associated with all four adiposity measures (P = 9.07×10-8 to 3.27×10-18) and lower transcriptional activity of the full-length isoform of ABCG1 (P = 6.00×10-7), higher triglyceride levels (P = 5.37×10-9) and higher triglycerides-to-HDL cholesterol ratio (P = 1.03×10-10). Of the 40 informative and obesity-related CpG loci, two (in IL2RB and FGF18) were significantly associated with colorectal cancer (inversely, P
MATERIALS AND METHODS: Original research studies associating genetic features and normal tissue complications following radiotherapy were identified from PubMed. The use of dosimetric data was determined by mining the statement of prescription dose, dose fractionation, target volume selection or arrangement and dose distribution. The consideration of the dosimetric data as covariates was based on the statement mentioned in the statistical analysis section. The significance of these covariates was extracted from the results section. Descriptive analyses were performed to determine their completeness and inclusion as covariates.
RESULTS: A total of 174 studies were found to satisfy the inclusion criteria. Studies published ≥2010 showed increased use of dose distribution information (p = 0.07). 33% of studies did not include any dose features in the analysis of gene-toxicity associations. Only 29% included dose distribution features as covariates and reported the results. 59% of studies which included dose distribution features found significant associations to toxicity.
CONCLUSION: A large proportion of studies on the correlation of genetic markers with radiotherapy-related side effects considered no dosimetric parameters. Significance of dose distribution features was found in more than half of the studies including these features, emphasizing their importance. Completeness of radiation-specific clinical data may have increased in recent years which may improve gene-toxicity association studies.