OBJECTIVES: To assess different methods for treating dental and orthodontic complications in people with thalassaemia.
SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register in September 2022, and we searched nine online databases and trials registries in January 2022. We searched the reference lists of relevant articles and reviews and contacted haematologists, experts in fields of dentistry, organisations, pharmaceutical companies and researchers working in this field.
SELECTION CRITERIA: We searched for published or unpublished randomised controlled trials (RCTs) that evaluated treatment of dental and orthodontic complications in individuals diagnosed with thalassaemia, irrespective of phenotype, severity, age, sex and ethnic origin.
DATA COLLECTION AND ANALYSIS: Two review authors independently screened the 37,242 titles retrieved by the search. After deduplication, we identified two potentially relevant RCTs. On assessing their eligibility against our inclusion and exclusion criteria, we excluded one and included the other.
MAIN RESULTS: We included one parallel-design RCT conducted in Saudi Arabia and involving 29 participants (19 males, 10 females) with thalassaemia. It aimed to assess the effectiveness of photodynamic therapy as an adjuvant to conventional full-mouth ultrasonic scaling for the treatment of gingivitis. The average age of participants was around 23 years. There is very low-certainty evidence from this trial that full-mouth ultrasonic scaling plus photodynamic therapy compared to full-mouth ultrasonic scaling alone may improve gingival index score and bleeding on probing after 12 weeks in people with thalassaemia. We found no studies that assessed other interventions for the various dental or orthodontic complications of thalassaemia.
AUTHORS' CONCLUSIONS: Although the included study showed greater reduction in gingivitis in the group treated with full-mouth ultrasonic scaling plus photodynamic therapy, the evidence is of very low certainty. The study had unclear risk of bias, a short follow-up period and no data on safety or adverse effects. We cannot make definitive recommendations for clinical practice based on the limited evidence of a single trial. Future studies will very likely affect the conclusions of this review. This review highlights the need for high-quality RCTs that investigate the effectiveness of various treatment modalities for dental and orthodontic complications in people with thalassaemia. It is crucial that future trials assess adverse effects of interventions.
OBJECTIVE: This study aims to systematically review the wide range of data and literatures related to siwak practice and its effect on periodontal health.
METHOD: The review was conducted based on scoping review techniques, searching literature in EBSCOHOST, PubMed, SCOPUS and Google scholar databases using the following search terms: "siwak' or 'miswak' or 'chewing stick" for intervention, and "periodontium or 'periodontal' or 'periodontal health' or 'periodontal disease" for outcome. Articles published between January 1990 to March 2021 and written in English language were included.
RESULTS: A total of 721 articles collected from the search and 21 of them were eligible for the final analysis. Results of this study was described based on clinical and antibacterial reporting of siwak, method of siwak practice and its adverse effect on oral health. Siwak was found effective at removing dental plaque and improving periodontal health over time although its effect on subgingival microbiota was inconclusive. Presence of gingival recession and clinical attachment loss were much more commonly reported in siwak users, attributable to variations in the methods employed for tooth cleaning using the siwak.
CONCLUSION: There is substantial evidence that the lack of standardised reporting for effective siwak use may have resulted in contradictory findings about its oral hygiene benefits and adverse effects. As such, future work on safe and effective siwak practice is to be advocated among its users.
Materials and Methods: A total of 111 subjects who fulfilled the inclusion and exclusion criteria were randomly included in the study. The subjects were recalled after 1 month of the commencement of fixed orthodontic treatment for the recording of baseline data including plaque index (PI), gingival index (GI), and modified papillary bleeding index (MPBI). After recording of the baseline data, the subjects were randomly allocated into each of the intervention groups, i.e., group A (manual tooth brush), group B (powered tooth brush), and group C (manual tooth brush combined with mouthwash) by lottery method. Further, all the subjects were recalled after 1 and 2 months for recording the data.
Results: Regarding plaque levels, it was seen that there was a highly statistically significant difference between the three groups (P = 0.001), with the manual tooth brush combined with chlorhexidine mouthwash group recording the lowest mean PI score of 0.5 ± 0.39. A comparison of the mean GI scores among the groups at the end of 2 months shows a highly statistically significant difference (P = 0.001). The mean MPBI scores at the end of 2 months were highly statistically significant among the three groups (P = 0.001), with the group C recording the lowest mean MPBI score of 0.3 ± 0.3.
Conclusion: The powered tooth brush group subjects exhibited significantly lesser PI, GI, and MPBI scores than the manual tooth brush group at the end of 2 months, whereas the manual tooth brush combined with chlorhexidine mouth wash group subjects showed maximum improvement, having significantly lesser PI and GI scores than the powered tooth brush group.
MATERIAL AND METHODS: A PRISMA-compliant systematic search of literature was done from the MEDLINE, CENTRAL, Science Direct, PubMed and Google Scholar. Literature that fulfilled eligibility criteria was identified. Data measuring plaque score and bleeding score were extracted. Qualitative and random-effects meta-analyses were conducted.
RESULTS: From 1736 titles and abstracts screened, eight articles were utilized for qualitative analysis, while five were selected for meta-analysis. The pooled effect estimates of SMD and 95% CI were -0.07 [-0.60 to 0.45] with an χ2 statistic of 0.32 (p = 0.0001), I2 = 80% as anti-plaque function and 95% CI were -2.07 [-4.05 to -0.10] with an χ2 statistic of 1.67 (p = 0.02), I2 = 82%.
CONCLUSION: S. persica chewing stick is a tool that could control plaque, comparable to a standard toothbrush. Further, it has a better anti-gingivitis effect and can be used as an alternative.
METHODS: A double-blinded, placebo-controlled prospective interventional study was conducted in school children aged 8-14 years. The study participants were divided into four groups depending upon the mouthwash used: Group 1 (aloe vera), Group 2 (chlorhexidine), Group 3 (tea tree oil) and Group 4 (placebo). The variables studied included plaque index, gingival index and salivary Streptococcus mutans counts, which were recorded at baseline, 4 weeks after supervised mouth rinse and after 2 weeks of stopping the mouth rinse.
RESULTS: A total of 89 boys and 63 girls were included. A statistically significant decrease in all variables was noted after the use of both the herbal preparations at the end of 4 weeks which was maintained after the 2-week washout period (p
OBJECTIVE: To assess the effects of toothpaste containing aqueous SH extract on plaque-induced gingivitis following orthodontic bond-up and to identify the optimal concentration of SH.
METHODS: A single-centred; triple-blinded randomized controlled trial conducted in 40 patients with FA. Participants were randomly assigned to one of the four groups with toothpaste which has concentration of SH extract of 0%, 3%, 6% or 9%. The statistician, the participants and the researchers involved in data collection were kept blinded from the allocation. Gingival Index (GI) and Bleeding on Probing (BOP) for each group were taken at day 0,7,14 and 30.
RESULTS: 9% of SH-containing toothpaste (SHCT) showed most substantial result as there were significance difference of GI (P = 0.020) from Day 7 to 14 and from Day 0 to 14 (P = 0.020). There was also significance difference of BOP from Day 0 to 14 (P = 0.022) and from Day 0 to 30 (P = 0.027). Significant difference was seen in 3% of SHCT group with the decrease of GI (P = 0.004) from Day 1 to 14. There were no significant difference noted for 0% and 6% SHCT.
CONCLUSION: The 9% SHCT is the most effective concentration to reduce both the gingival inflammation (up to day 14) and bleeding on probing (up to day 30).