Displaying publications 1 - 20 of 53 in total

Abstract:
Sort:
  1. Hussain A, Muthuvalu MS, Faye I, Zafar M, Inc M, Afzal F, et al.
    Comput Biol Med, 2023 Feb;153:106429.
    PMID: 36587570 DOI: 10.1016/j.compbiomed.2022.106429
    A brain tumor is a dynamic system in which cells develop rapidly and abnormally, as is the case with most cancers. Cancer develops in the brain or inside the skull when aberrant and odd cells proliferate in the brain. By depriving the healthy cells of leisure, nutrition, and oxygen, these aberrant cells eventually cause the healthy cells to perish. This article investigated the development of glioma cells in treating brain tumors. Mathematically, reaction-diffusion models have been developed for brain glioma growth to quantify the diffusion and proliferation of the tumor cells within brain tissues. This study presents the formulation the two-stage successive over-relaxation (TSSOR) algorithm based on the finite difference approximation for solving the treated brain glioma model to predict glioma cells in treating the brain tumor. Also, the performance of TSSOR method is compared to the Gauss-Seidel (GS) and two-stage Gauss-Seidel (TSGS) methods in terms of the number of iterations, the amount of time it takes to process the data, and the rate at which glioma cells grow the fastest. The implementation of the TSSOR, TSGS, and GS methods predicts the growth of tumor cells under the treatment protocol. The results show that the number of glioma cells decreased initially and then increased gradually by the next day. The computational complexity analysis is also used and concludes that the TSSOR method is faster compared to the TSGS and GS methods. According to the results of the treated glioma development model, the TSSOR approach reduced the number of iterations by between 8.0 and 71.95%. In terms of computational time, the TSSOR approach is around 1.18-76.34% faster than the TSGS and GS methods.
    Matched MeSH terms: Glioma*
  2. Hossain R, Ibrahim RB, Hashim HB
    World Neurosurg, 2023 Jul;175:57-68.
    PMID: 37019303 DOI: 10.1016/j.wneu.2023.03.115
    To develop a research overview of brain tumor classification using machine learning, we conducted a systematic review with a bibliometric analysis. Our systematic review and bibliometric analysis included 1747 studies of automated brain tumor detection using machine learning reported in the previous 5 years (2019-2023) from 679 different sources and authored by 6632 investigators. Bibliographic data were collected from the Scopus database, and a comprehensive bibliometric analysis was conducted using Biblioshiny and the R platform. The most productive and collaborative institutes, reports, journals, and countries were determined using citation analysis. In addition, various collaboration metrics were determined at the institute, country, and author level. Lotka's law was tested using the authors' performance. Analysis showed that the authors' publication trends followed Lotka's inverse square law. An annual publication analysis showed that 36.46% of the studies had been reported in 2022, with steady growth from previous years. Most of the cited authors had focused on multiclass classification and novel convolutional neural network models that are efficient for small training sets. A keyword analysis showed that "deep learning," "magnetic resonance imaging," "nuclear magnetic resonance imaging," and "glioma" appeared most often, proving that of the several brain tumor types, most studies had focused on glioma. India, China, and the United States were among the highest collaborative countries in terms of both authors and institutes. The University of Toronto and Harvard Medical School had the highest number of affiliations with 132 and 87 publications, respectively.
    Matched MeSH terms: Glioma*
  3. Chew SH, Achmad Sankala HB, Chew E, Md Arif MHB, Mohd Zain NR, Hashim H, et al.
    Mult Scler Relat Disord, 2023 Nov;79:104992.
    PMID: 37717306 DOI: 10.1016/j.msard.2023.104992
    BACKGROUND: Differentiating tumefactive demyelinating lesions (TDL) from neoplasms of the central nervous system continues to be a diagnostic dilemma in many cases.

    OBJECTIVE: Our study aimed to examine and contrast the clinical and radiological characteristics of TDL, high-grade gliomas (HGG) and primary CNS lymphoma (CNSL).

    METHOD: This was a retrospective review of 66 patients (23 TDL, 31 HGG and 12 CNSL). Clinical and laboratory data were obtained. MRI brain at presentation were analyzed by two independent, blinded neuroradiologists.

    RESULTS: Patients with TDLs were younger and predominantly female. Sensorimotor deficits and ataxia were more common amongst TDL whereas headaches and altered mental status were associated with HGG and CNSL. Compared to HGG and CNSL, MRI characteristics supporting TDL included relatively smaller size, lack of or mild mass effect, incomplete peripheral rim enhancement, absence of central enhancement or restricted diffusion, lack of cortical involvement, and presence of remote white matter lesions on the index scan. Paradoxically, some TDLs may present atypically or radiologically mimic CNS lymphomas.

    CONCLUSION: Careful evaluation of clinical and radiological features helps in differentiating TDLs at first presentation from CNS neoplasms.

    Matched MeSH terms: Glioma*
  4. Yuzhakova DV, Lukina MM, Sachkova DA, Yusubalieva GM, Baklaushev VP, Mozherov AM, et al.
    Sovrem Tekhnologii Med, 2023;15(2):28-38.
    PMID: 37389023 DOI: 10.17691/stm2023.15.2.03
    Patient-specific in vitro tumor models are a promising platform for studying the mechanisms of oncogenesis and personalized selection of drugs. In case of glial brain tumors, development and use of such models is particularly relevant as the effectiveness of such tumor treatment remains extremely unsatisfactory. The aim of the study was to develop a model of a 3D tumor glioblastoma spheroid based on a patient's surgical material and to study its metabolic characteristics by means of fluorescence lifetime imaging microscopy of metabolic coenzymes.

    MATERIALS AND METHODS: The study was conducted with tumor samples from patients diagnosed with glioblastoma (Grade IV). To create spheroids, primary cultures were isolated from tumor tissue samples; the said cultures were characterized morphologically and immunocytochemically, and then planted into round-bottom ultra low-adhesion plates. The number of cells for planting was chosen empirically. The characteristics of the growth of cell cultures were compared with spheroids from glioblastomas of patients with U373 MG stable line of human glioblastoma. Visualization of autofluorescence of metabolic coenzymes of nicotinamide adenine dinucleotide (phosphate) NAD(P)H and flavin adenine dinucleotide (FAD) in spheroids was performed by means of an LSM 880 laser scanning microscope (Carl Zeiss, Germany) with a FLIM module (Becker & Hickl GmbH, Germany). The autofluorescence decay parameters were studied under normoxic and hypoxic conditions (3.5% О2).

    RESULTS: An original protocol for 3D glioblastoma spheroids cultivation was developed. Primary glial cultures from surgical material of patients were obtained and characterized. The isolated glioblastoma cells had a spindle-shaped morphology with numerous processes and a pronounced granularity of cytoplasm. All cultures expressed glial fibrillary acidic protein (GFAP). The optimal seeding dose of 2000 cells per well was specified; its application results in formation of spheroids with a dense structure and stable growth during 7 days. The FLIM method helped to establish that spheroid cells from the patient material had a generally similar metabolism to spheroids from the stable line, however, they demonstrated more pronounced metabolic heterogeneity. Cultivation of spheroids under hypoxic conditions revealed a transition to a more glycolytic type of metabolism, which is expressed in an increase in the contribution of the free form of NAD(P)H to fluorescence decay.

    CONCLUSION: The developed model of tumor spheroids from patients' glioblastomas in combination with the FLIM can serve as a tool to study characteristics of tumor metabolism and develop predictive tests to evaluate the effectiveness of antitumor therapy.

    Matched MeSH terms: Glioma*
  5. Dai W, Chen J, Guo X, Su Z
    Tumour Biol., 2015 Jun;36(6):4089.
    PMID: 26025112 DOI: 10.1007/s13277-015-3481-4
    With great interest, we read the article "Relationships between PTEN gene mutations and prognosis in glioma: a meta-analysis" (by Xiao et al. Tumor Biol 35(7):6687-6693, 2014), which has reached important conclusions that the phosphatase and tensin homolog (PTEN) gene mutations were closely related to poor prognosis of glioma patients. Through quantitative analysis, the investigators (Xiao WZ et al.) showed that glioma patients with PTEN gene mutations exhibited a significantly shorter overall survival (OS) than those without PTEN gene mutations (HR = 3.66, 95 % CI = 2.02∼5.30, P glioma among Americans (HR = 3.72, 95 % CI = 1.72∼5.73, P  0.05). The meta-analysis results are encouraging. Nevertheless, some deficiencies still existed that we would like to raise.
    Matched MeSH terms: Glioma/genetics*
  6. Angelopoulou E, Paudel YN, Piperi C
    J Mol Med (Berl), 2020 11;98(11):1525-1546.
    PMID: 32978667 DOI: 10.1007/s00109-020-01984-x
    Despite extensive research, gliomas are associated with high morbidity and mortality, mainly attributed to the rapid growth rate, excessive invasiveness, and molecular heterogeneity, as well as regenerative potential of cancer stem cells. Therefore, elucidation of the underlying molecular mechanisms and the identification of potential molecular diagnostic and prognostic biomarkers are of paramount importance. HOX transcript antisense intergenic RNA (HOTAIR) is a well-studied long noncoding RNA, playing an emerging role in tumorigenesis of several human cancers. A growing amount of preclinical and clinical evidence highlights the pro-oncogenic role of HOTAIR in gliomas, mainly attributed to the enhancement of proliferation and migration, as well as inhibition of apoptosis. In vitro and in vivo studies demonstrate that HOTAIR modulates the activity of specific transcription factors, such as MXI1, E2F1, ATF5, and ASCL1, and regulates the expression of cell cycle-associated genes along with related signaling pathways, like the Wnt/β-catenin axis. Moreover, it can interact with specific miRNAs, including miR-326, miR-141, miR-148b-3p, miR-15b, and miR-126-5p. Of importance, HOTAIR has been demonstrated to enhance angiogenesis and affect the permeability of the blood-tumor barrier, thus modulating the efficacy of chemotherapeutic agents. Herein, we provide evidence on the functional role of HOTAIR in gliomas and discuss the benefits of its targeting as a novel approach toward glioma treatment.
    Matched MeSH terms: Glioma/genetics*; Glioma/metabolism; Glioma/pathology; Glioma/therapy
  7. Xiao WZ, Han DH, Wang F, Wang YQ, Zhu YH, Wu YF, et al.
    Tumour Biol., 2014 Jul;35(7):6687-93.
    PMID: 24705863 DOI: 10.1007/s13277-014-1885-1
    We conducted a meta-analysis in order to investigate the relationships between PTEN gene mutations and the prognosis in glioma. The following electronic databases were searched for relevant articles without any language restrictions: Web of Science (1945 ~ 2013), the Cochrane Library Database (Issue 12, 2013), PubMed (1966 ~ 2013), EMBASE (1980 ~ 2013), CINAHL (1982 ~ 2013), and the Chinese Biomedical Database (CBM) (1982 ~ 2013). Meta-analyses were conducted using the STATA software (Version 12.0, Stata Corporation, College Station, Texas USA). Hazard ratio (HR) with its corresponding 95 % confidence interval (95%CI) was calculated. Six independent cohort studies with a total of 357 glioma patients met our inclusion criteria. Our meta-analysis results indicated that glioma patients with PTEN gene mutations exhibited a significantly shorter overall survival (OS) than those without PTEN gene mutations (HR = 3.66, 95%CI = 2.02 ~ 5.30, P < 0.001). Ethnicity-stratified subgroup analysis demonstrated that PTEN gene mutations were closely linked to poor prognosis in glioma among Americans (HR = 3.72, 95%CI = 1.72 ~ 5.73, P < 0.001), while similar correlations were not observed among populations in Sweden, Italy, and Malaysia (all P > 0.05). Our meta-analysis provides direct and strong evidences for the speculation of PTEN gene mutations' correlation with poor prognosis of glioma patients.
    Matched MeSH terms: Glioma/genetics*; Glioma/pathology
  8. Jafri A, Aziz MY, Ros S, Nizam I
    Med J Malaysia, 2003 Jun;58(2):236-42.
    PMID: 14569744
    This is the first investigation performed to detect the presence of the p53 mutation in Malay patients with gliomas. The p53 gene was amplified using polymerase chain reaction (PCR) from 33 fresh-frozen tumour tissues from patients histologically confirmed as glioma. Four hot spot areas that lie between exon 5 to 8 were screened for mutation by mean of non-isotopic "cold" single strand conformation polymorphism (SSCP) analysis and direct sequencing. The frequency of p53 gene mutation in gliomas examined was 33% (11 of 33). Five (45.5%) cases had mutation in exon 7, four (36.4%) had mutation in exon 8 and two (18.1%) had mutation in exon 6. Seven (63.6%) of 11 mutations were single nucleotide point mutations of which 5 were missense mutations, 1 was nonsense mutation and 1 was, silent mutation. Three (27.3%) showed insertion mutation and 1 (9.1%) showed deletion mutation. Of the point mutations, 57.1% were transitions and 42.9% were transversions. These results suggested that p53 mutations frequently occur in gliomas and this gene does play an important role in the tumourigenesis process of Malay patients with brain tumours.
    Matched MeSH terms: Glioma/genetics*; Glioma/pathology
  9. Zamzuri I, Rahman GI, Muzaimi M, Jafri AM, Nik Ruzman NI, Lutfi YA, et al.
    Med J Malaysia, 2012 Feb;67(1):121-2.
    PMID: 22582564 MyJurnal
    High grade gliomas, frequently with their infiltrative nature, often make the outcome from neurosurgical intervention alone unsatisfactory. It is recognized that adjuvant radiochemotherapy approaches offer an improved prognosis. For these reasons, we opted for surgical debulking, intraoperative radiation therapy (IORT) in combination with whole brain irradiation therapy and chemotherapy (temozolamide cycles) in the management of a 42 year-old lady with Glioblastoma Multiforme (GBM). Her troublesome symptoms improved after 3 months of this polymodal therapy and remained independently functional for more than two years.
    Matched MeSH terms: Glioma/therapy*
  10. Arumugasamy N
    Med J Malaya, 1966 Dec;21(2):140-8.
    PMID: 4227385
    Matched MeSH terms: Glioma/complications
  11. Mat Zin AA, Zulkarnain S
    Asian Pac J Cancer Prev, 2019 Feb 26;20(2):321-325.
    PMID: 30803189
    Glioma is the commonest primary intracranial tumour and it has been the most predominant tumour in many studies.
    It accounts for 24.7% of all primary brain tumour and 74.6% of malignant brain tumour. Intraoperative diagnosis
    plays a crucial role in determining the patient management. Frozen section has been the established technique in
    providing rapid and accurate intraoperative diagnosis. However due to some disadvantages like ice crystal artefact,
    high expenditure and requirement of skilled technician, there is increase usage of cytology smear either replacing or
    supplementing frozen section technique. The aim of this review is to determine the diagnostic accuracy of cytology
    smear and frozen section in glioma and to see whether there is significant difference between those techniques. The
    overall diagnostic accuracy for frozen section in glioma ranging from 78.4% to 95% while for cytology smear, the
    diagnostic accuracy ranging from 50% to 100%. Based on certain literatures, no statistically difference was observed
    in diagnostic accuracy of cytology smear and frozen section. Thus, cytology smear provides an alternative method in
    establishing intraoperative diagnosis. Both cytology smear and frozen section are complimentary to each other. It is
    recommended to use both techniques to improve the diagnostic accuracy in addition with adequate knowledge, clinical
    history, neuroimaging and intraoperative findings.
    Matched MeSH terms: Glioma/diagnosis*
  12. Abdullah JM, Farizan A, Asmarina K, Zainuddin N, Ghazali MM, Jaafar H, et al.
    Asian J Surg, 2006 Oct;29(4):274-82.
    PMID: 17098662
    The pattern of allelic loss of heterozygosity (LOH) and PTEN mutations appear to be associated with the progression of gliomas leading to a decrement in the survival rate of patients. This present study was carried out to determine the LOH and PTEN mutational status in glioma patients and its association with patients' survival.
    Matched MeSH terms: Glioma/diagnosis; Glioma/genetics*; Glioma/mortality*; Glioma/pathology
  13. Robert M, Wastie M
    Biomed Imaging Interv J, 2008 Jan;4(1):e3.
    PMID: 21614314 MyJurnal DOI: 10.2349/biij.4.1.e3
    Glioblastoma multiforme (GBM) is the most aggressive form of primary brain tumours known collectively as gliomas. Gliomas are graded by their microscopic appearance. As a rule, their behaviour can be predicted from histology: Grade I (pilocytic astrocytomas) and Grade II (benign astrocytomas) tumours are of low grade and grow slowly over many years. Grade IV tumours (GBM) are the most aggressive and, unfortunately, also the most common in humans, growing rapidly, invading and altering brain function. These tumours arise from the supporting glial cells of the brain during childhood and in adulthood.These growths do not spread throughout the body like other forms of cancer, but cause symptoms by invading the brain. Untreated GBMs are rapidly lethal. Most patients with GBM die of their disease in less than a year and none have long term survival.Extracranial metastases from GBM are extremely rare, with a reported frequency of only 0.44% because of the absence of lymphatics in the brain and the difficulty of tumours to penetrate blood vessels. A case of glioblastoma multiforme with the rare features of extensive liver and bone metastases is presented in this paper.
    Matched MeSH terms: Glioma
  14. Mohamed Yusoff AA, Mohd Khair SZN, Abd Radzak SM, Idris Z, Lee HC
    J Chin Med Assoc, 2020 Sep;83(9):838-844.
    PMID: 32732530 DOI: 10.1097/JCMA.0000000000000401
    BACKGROUND: The 4977-bp common deletion (mtDNA) is a well-established mitochondrial genome alteration that has been described in various types of human cancers. However, to date, no studies on mtDNA in brain tumors have been reported. The present study aimed to determine mtDNA prevalence in common brain tumors, specifically, low- and high-grade gliomas (LGGs and HGGs), and meningiomas in Malaysian cases. Its correlation with clinicopathological parameters was also evaluated.

    METHODS: A total of 50 patients with pathologically confirmed brain tumors (13 LGGs, 20 HGGs, and 17 meningiomas) were enrolled in this study. mtDNA was detected by using polymerase chain reaction (PCR) technique and later confirmed via Sanger DNA sequencing.

    RESULTS: Overall, mtDNA was observed in 16 (32%) patients and it was significantly correlated with the type of tumor group and sex, being more common in the HGG group and in male patients.

    CONCLUSION: The prevalence of mtDNA in Malaysian glioma and meningioma cases has been described for the first time and it was, indeed, comparable with previously published studies. This study provides initial insights into mtDNA in brain tumor and these findings can serve as new data for the global mitochondrial DNA mutations database.

    Matched MeSH terms: Glioma/genetics*; Glioma/metabolism; Glioma/pathology
  15. Zulkifli MM, Ibrahim R, Ali AM, Aini I, Jaafar H, Hilda SS, et al.
    Neurol Res, 2009 Feb;31(1):3-10.
    PMID: 18937888 DOI: 10.1179/174313208X325218
    Newcastle disease virus (NDV) is a virus of paramyxovirus family and lately has been studied for the treatment of cancer in human. In this study, we successfully determined the oncolysis potential of NDV vaccine, V4UPM tested on the human glioblastoma multiform cell line (DBTRG.05MG) and human glioblastoma astrocytoma cell line (U-87MG) in vitro and in vivo. The V4UPM strain is a modified V4 strain developed as thermostable feed pellet vaccine for poultry.
    Matched MeSH terms: Glioma/therapy; Glioma/virology*
  16. Abdullah JM, Zainuddin N, Sulong S, Jaafar H, Isa MN
    Neurosurg Focus, 2003 Apr 15;14(4):e6.
    PMID: 15679305
    Several genes have been shown to carry mutations in human malignant gliomas, including the phosphatase and tensin homolog (PTEN) deleted on chromosome 10 and p16 tumor suppressor genes. Alterations of this gene located on chromosome 10 q23 and 9p21, respectively, may contribute to gliomagenesis. In this study, the authors analyzed 20 cases of malignant gliomas obtained in patients living on the east coast of Malaysia to investigate the possibilities of involvement of the PTEN and p16 genes.
    Matched MeSH terms: Glioma/genetics*; Glioma/pathology
  17. Lucero R, Zappulli V, Sammarco A, Murillo OD, Cheah PS, Srinivasan S, et al.
    Cell Rep, 2020 02 18;30(7):2065-2074.e4.
    PMID: 32075753 DOI: 10.1016/j.celrep.2020.01.073
    Glioblastoma (GBM) is characterized by aberrant vascularization and a complex tumor microenvironment. The failure of anti-angiogenic therapies suggests pathways of GBM neovascularization, possibly attributable to glioblastoma stem cells (GSCs) and their interplay with the tumor microenvironment. It has been established that GSC-derived extracellular vesicles (GSC-EVs) and their cargoes are proangiogenic in vitro. To further elucidate EV-mediated mechanisms of neovascularization in vitro, we perform RNA-seq and DNA methylation profiling of human brain endothelial cells exposed to GSC-EVs. To correlate these results to tumors in vivo, we perform histoepigenetic analysis of GBM molecular profiles in the TCGA collection. Remarkably, GSC-EVs and normal vascular growth factors stimulate highly distinct gene regulatory responses that converge on angiogenesis. The response to GSC-EVs shows a footprint of post-transcriptional gene silencing by EV-derived miRNAs. Our results provide insights into targetable angiogenesis pathways in GBM and miRNA candidates for liquid biopsy biomarkers.
    Matched MeSH terms: Glioma/genetics*; Glioma/pathology
  18. Chelliah SS, Paul EAL, Kamarudin MNA, Parhar I
    Molecules, 2021 Feb 22;26(4).
    PMID: 33671796 DOI: 10.3390/molecules26041169
    Despite their low incidence rate globally, high-grade gliomas (HGG) remain a fatal primary brain tumor. The recommended therapy often is incapable of resecting the tumor entirely and exclusively targeting the tumor leads to tumor recurrence and dismal prognosis. Additionally, many HGG patients are not well suited for standard therapy and instead, subjected to a palliative approach. HGG tumors are highly infiltrative and the complex tumor microenvironment as well as high tumor heterogeneity often poses the main challenges towards the standard treatment. Therefore, a one-fit-approach may not be suitable for HGG management. Thus, a multimodal approach of standard therapy with immunotherapy, nanomedicine, repurposing of older drugs, use of phytochemicals, and precision medicine may be more advantageous than a single treatment model. This multimodal approach considers the environmental and genetic factors which could affect the patient's response to therapy, thus improving their outcome. This review discusses the current views and advances in potential HGG therapeutic approaches and, aims to bridge the existing knowledge gap that will assist in overcoming challenges in HGG.
    Matched MeSH terms: Glioma/diagnosis; Glioma/therapy*
  19. Rahman AA, Makpol S, Jamal R, Harun R, Mokhtar N, Ngah WZ
    Molecules, 2014 Sep 12;19(9):14528-41.
    PMID: 25221872 DOI: 10.3390/molecules190914528
    Plant bioactives [6]-gingerol (GING), epigallocatechin gallate (EGCG) and asiaticoside (AS) and vitamin E, such as tocotrienol-rich fraction (TRF), have been reported to possess anticancer activity. In this study, we investigated the apoptotic properties of these bioactive compounds alone or in combination on glioma cancer cells. TRF, GING, EGCG and AS were tested for cytotoxicity on glioma cell lines 1321N1 (Grade II), SW1783 (Grade III) and LN18 (Grade IV) in culture by the (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) (MTS) assay. With the exception of AS, combinations of two compounds were tested, and the interactions of each combination were evaluated by the combination index (CI) using an isobologram. Different grades of glioma cancer cells showed different cytotoxic responses to the compounds, where in 1321N1 and LN18 cells, the combination of EGCG + GING exhibited a synergistic effect with CI = 0.77 and CI = 0.55, respectively. In contrast, all combinations tested (TRF + GING, TRF + EGCG and EGCG + GING) were found to be antagonistic on SW1783 with CI values of 1.29, 1.39 and 1.39, respectively. Combined EGCG + GING induced apoptosis in both 1321N1 and LN18 cells, as evidenced by Annexin-V FITC/PI staining and increased active caspase-3. Our current data suggests that the combination of EGCG + GING synergistically induced apoptosis and inhibits the proliferation 1321N1 and LN18 cells, but not SW1783 cells, which may be due to their different genetic profiles.
    Matched MeSH terms: Glioma/drug therapy*; Glioma/pathology
  20. Xin Y, Hao S, Lu J, Wang Q, Zhang L
    PLoS One, 2014;9(4):e95966.
    PMID: 24763305 DOI: 10.1371/journal.pone.0095966
    To comprehensively evaluate the association of ERCC1 C8092A and ERCC2 Lys751Gln polymorphisms with the risk of glioma.
    Matched MeSH terms: Glioma/ethnology; Glioma/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links