Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Chan KW, Khong NM, Iqbal S, Umar IM, Ismail M
    Int J Mol Sci, 2012;13(7):8987-97.
    PMID: 22942747 DOI: 10.3390/ijms13078987
    Sweet potato is known to be rich in healthful antioxidants, but the stability of its antioxidant properties under gastrointestinal pH is very much unknown. Hence, this study aimed to evaluate the changes in antioxidant properties (total contents of phenolics and flavonoids as well as antioxidant activity) of sweet potato flour (SPF) under simulated gastrointestinal pH conditions. It was found that the yield of SPF crude phenolic extract increased from 0.29 to 3.22 g/100 g SPF upon subjection to gastrointestinal pH conditions (p < 0.05). Also elevated significantly were the total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity of SPF (p < 0.05). In summary, the antioxidant properties of SPF were enhanced under gastrointestinal pH conditions, suggesting that SPF might possess a considerable amount of bound phenolic and other antioxidative compounds. The antioxidant properties of SPF are largely influenced by pH and thus might be enhanced during the in vivo digestive process.
    Matched MeSH terms: Ipomoea batatas/chemistry*
  2. Md. Akhir, H., Ahmad, D., Rukunudin, I. H., Shamsuddin, S., A. Yahya
    MyJurnal
    This paper describes a study on the design, fabrication and testing of a prototype digging device for sweet potato tubers in bris soil. The soil texture was sandy soil (fine sand 94.53%), with mean moisture content of 9.16% and mean bulk density of 1.44 g-cm-3. The soil was prepared in a soil bin. Three types of soil digging tools were designed and fabricated to determine the optimum draft force. These were Flat or plane, V-shaped and Hoe type blades. Plane and V-shaped blades were 30 cm long, and 13 cm wide, while the Hoe type had three rods, 25 mm in diameter, 30 cm long and 6.5 cm wide with sharp cutting edge. The digging tools were tested in a soil bin filled with bris soil to determine the optimum draft force and area of soil disturbance. The results were analysed using statistical analysis of variance (ANOVA). Comparison between all blade types and blade depths to measured draft force and the area of soil disturbed showed that the highest draft of 0.54 kN-m-2 was caused by a flat or plane blade at the optimum depth of 20 cm when the area of soil disturbed was 0.180 m2 . The V-shaped blade had the mean draft of 0.51 kN-m-2, with area of soil disturbance of 0.185 m2 . Thebest choice was V-shaped blade with a rake angle of 30o at 20 cm. depth. The selected blade was fixed onto the sweet potato harvester and tested on bris soil planted with sweet potato of Telong and VitAto varieties. The harvesting efficiency of the machine in bris soil was 93.64% and 90.49% for Telong (Plot A) and VitAto (Plot B) varieties, respectively. The average ground speed and turning time during operation for plots A and B was 0.56 km-hr-1 and 102.7 s and 0.99 km-hr-1 and 81.22 s, respectively. The harvesting efficiencies for both plots showed no significant difference. The total productive time (harvesting time) and unproductive time (turning time) in plot A, at a tractor speed of 0.56 km.hr-1, was 14.8 hours for harvesting a hectare of sweet potato ( 0.068 ha.hr-1). In plot B, the total time for harvesting a hectare of sweet potato was 8.35 hours (0.12 ha.hr-1) at a tractor speed of 0.99 km.hr-1. The average harvesting time for both plots was 11.47 hr.ha-1. The average field work rate was 0.087 ha.hr-1 or 34 man-hr.ha-1 compared to manual harvesting of 150 man-hrs.ha-1.
    Matched MeSH terms: Ipomoea batatas
  3. Onwude DI, Hashim N, Chen G, Putranto A, Udoenoh NR
    J Sci Food Agric, 2021 Jan 30;101(2):398-413.
    PMID: 32627847 DOI: 10.1002/jsfa.10649
    BACKGROUND: Combined infrared (CIR) and convective drying is a promising technology in dehydrating heat-sensitive foods, such as fruits and vegetables. This novel thermal drying method, which involves the application of infrared energy and hot air during a drying process, can drastically enhance energy efficiency and improve overall product quality at the end of the process. Understanding the dynamics of what goes on inside the product during drying is important for further development, optimization, and upscaling of the drying method. In this study, a multiphase porous media model considering liquid water, gases, and solid matrix was developed for the CIR and hot-air drying (HAD) of sweet potato slices in order to capture the relevant physics and obtain an in-depth insight on the drying process. The model was simulated using Matlab with user-friendly graphical user interface for easy coupling and faster computational time.

    RESULTS: The gas pressure for CIR-HAD was higher centrally and decreased gradually towards the surface of the product. This implies that drying force is stronger at the product core than at the product surface. A phase change from liquid water to vapour occurs almost immediately after the start of the drying process for CIR-HAD. The evaporation rate, as expected, was observed to increase with increased drying time. Evaporation during CIR-HAD increased with increasing distance from the centreline of the sample surface. The simulation results of water and vapour flux revealed that moisture transport around the surfaces and sides of the sample is as a result of capillary diffusion, binary diffusion, and gas pressure in both the vertical and horizontal directions. The nonuniform dominant infrared heating caused the heterogeneous distribution of product temperature. These results suggest that CIR-HAD of food occurs in a non-uniform manner with high vapour and water concentration gradient between the product core and the surface.

    CONCLUSIONS: This study provides in-depth insight into the physics and phase changes of food during CIR-HAD. The multiphase model has the advantage that phase change and impact of CIR-HAD operating parameters can be swiftly quantified. Such a modelling approach is thereby significant for further development and process optimization of CIR-HAD towards industrial upscaling. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Ipomoea batatas/radiation effects; Ipomoea batatas/chemistry*
  4. Aishah, B., Nursabrina, M., Noriham, A., Norizzah, A.R., Mohamad Shahrimi, H.
    MyJurnal
    There are many factors influencing the stability and color variation of natural colorant anthocyanin and pH is among the most significant factor. This study aims to determine the stability of the anthocyanins in freeze-dried Hibiscus sabdariffa, Melastoma malabathricum and Ipomoea batatas in various acidic pH (pH 2.0, 2.5, 3.0, 3.5, 4.0 and 4.5). Total monomeric anthocyanin, degradation index, color density and percent polymeric color were analyzed to determine anthocyanins degradation and their color variations. Among the samples, H.sabdariffa contain the highest monomeric anthocyanins (163.3 mg/L) followed by M. malabathricum (49.9 mg/L) and the lowest is I.batatas (13.8 mg/L). Monomeric anthocyanins from I.batatas were found to be very stable and not affected by changes in pH than in H. sabdariffa and M. malabathricum. However, degradation index (DI) of H. sabdariffa was the lowest with value of 0.365 ± 0.049 at pH 3.5. The lowest percentage of polymeric color (4.94 ± 0.64) was also shown by H. sabdariffa at pH 2.5 and maintained a deep red color with increasing pH indicating higher color stability compared to M. malabathricum and I. batatas. Overall, natural pigment in H. sabdariffa was found to be the most stable in both monomeric anthocyanin content and chromaticity properties. These results provided information that will further proven the potential usage of H. sabdariffa, M. malabathricum and I. batatas as natural coloring agents to replace the synthetic colorant in food and beverage industries.
    Matched MeSH terms: Ipomoea batatas
  5. Lim PK, Jinap S, Sanny M, Tan CP, Khatib A
    J Food Sci, 2014 Jan;79(1):T115-21.
    PMID: 24344977 DOI: 10.1111/1750-3841.12250
    The objective of this study was to evaluate the precursors of acrylamide formation in sweet potato (SP) (Ipomoea batatas L. Lam) chips and to determine the effect of different types of vegetable oils (VOs), that is, palm olein, coconut oil, canola oil, and soya bean oil, on acrylamide formation. The reducing sugars and amino acids in the SP slices were analyzed, and the acrylamide concentrations of SP chips were measured. SP chips that were fried in a lower degree of unsaturation oils contained a lower acrylamide concentration (1443 μg/kg), whereas those fried with higher degree of unsaturated oils contained a higher acrylamide concentration (2019 μg/kg). SP roots were found to contain acrylamide precursors, that is, 4.17 mg/g glucose and 5.05 mg/g fructose, and 1.63 mg/g free asparagine. The type of VO and condition used for frying, significantly influenced acrylamide formation. This study clearly indicates that the contribution of lipids in the formation of acrylamide should not be neglected.
    Matched MeSH terms: Ipomoea batatas/chemistry*
  6. Al Mutairi AMM, Kabir NA
    Radiat Prot Dosimetry, 2020 Jun 12;188(1):47-55.
    PMID: 31711202 DOI: 10.1093/rpd/ncz256
    Tapioca and sweet potato are the fourth and fifth most consumed crops in Malaysia. The activity concentrations of natural radionuclides in these vegetables were assessed from two regions in Malaysia (Kedah and Penang) along with soil samples using gamma ray spectroscopy. The transfer factors of 226Ra, 232Th and 40K from soil to vegetables were calculated, and a dose assessment was performed. The activity concentrations of 226Ra, 232Th and 40K in soil samples did not show a significant variation with the regions investigated, and the average values obtained, in Bq/kg, (±SD) were as follows: 80 ± 41, 56 ± 12, 516 ± 119, respectively. The respective average activity concentrations in vegetables were as follows, in Bq/kg: (±SD) 2.0 ± 0.5, 6 ± 2, 153 ± 49. The corresponding transfer factors were calculated to be 0.03, 0.11 and 0.31 for 226Ra, 232Th and 40K, respectively. The average annual effective doses due to the exposure from soil and ingestion of vegetables were found to lie within the worldwide ranges.
    Matched MeSH terms: Ipomoea batatas*
  7. Hamidon NH, Abang Zaidel DN, Mohd Jusoh YM
    Recent Pat Food Nutr Agric, 2020;11(3):202-210.
    PMID: 32031081 DOI: 10.2174/2212798411666200207102051
    BACKGROUND: Pectin is a natural polysaccharide that has been used widely as a stabilizer in food emulsion system.

    OBJECTIVE: This study aimed to optimize the yield of pectin extracted from sweet potato residue and investigate its emulsifying properties.

    METHODS: Response surface methodology (RSM) has been utilized to investigate the pectin extracted from sweet potato peels using citric acid as the extracting solvent. Investigation of the effect of different extraction conditions namely temperature (°C), time (min) and solution pH on pectin yield (%) were conducted. A Box-Benhken design with three levels of variation was used to optimize the extraction conditions.

    RESULTS: The optimal conditions determined were temperature 76°C, time 64 min and pH 1.2 with 65.2% yield of pectin. The degree of esterification (DE) of the sweet potato pectin was determined using Fourier Transform Infrared (FTIR) Spectroscopy. The pectin is high-methoxyl pectin with DE of 58.5%. Emulsifying properties of sweet potato pectin were investigated by measuring the zeta-potential, particle size and creaming index with addition of 0.4 and 1.0 wt % pectin to the emulsion.

    CONCLUSION: Extraction using citric acid could improve the pectin yield. Improved emulsion stability was observed with the addition of the sweet potato pectin.

    Matched MeSH terms: Ipomoea batatas/chemistry*
  8. Onwude DI, Hashim N, Abdan K, Janius R, Chen G
    J Sci Food Agric, 2018 Mar;98(4):1310-1324.
    PMID: 28758207 DOI: 10.1002/jsfa.8595
    BACKGROUND: Drying is a method used to preserve agricultural crops. During the drying of products with high moisture content, structural changes in shape, volume, area, density and porosity occur. These changes could affect the final quality of dried product and also the effective design of drying equipment. Therefore, this study investigated a novel approach in monitoring and predicting the shrinkage of sweet potato during drying. Drying experiments were conducted at temperatures of 50-70 °C and samples thicknesses of 2-6 mm. The volume and surface area obtained from camera vision, and the perimeter and illuminated area from backscattered optical images were analysed and used to evaluate the shrinkage of sweet potato during drying.

    RESULTS: The relationship between dimensionless moisture content and shrinkage of sweet potato in terms of volume, surface area, perimeter and illuminated area was found to be linearly correlated. The results also demonstrated that the shrinkage of sweet potato based on computer vision and backscattered optical parameters is affected by the product thickness, drying temperature and drying time. A multilayer perceptron (MLP) artificial neural network with input layer containing three cells, two hidden layers (18 neurons), and five cells for output layer, was used to develop a model that can monitor, control and predict the shrinkage parameters and moisture content of sweet potato slices under different drying conditions. The developed ANN model satisfactorily predicted the shrinkage and dimensionless moisture content of sweet potato with correlation coefficient greater than 0.95.

    CONCLUSION: Combined computer vision, laser light backscattering imaging and artificial neural network can be used as a non-destructive, rapid and easily adaptable technique for in-line monitoring, predicting and controlling the shrinkage and moisture changes of food and agricultural crops during drying. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Ipomoea batatas*
  9. Naomi R, Bahari H, Yazid MD, Othman F, Zakaria ZA, Hussain MK
    Int J Mol Sci, 2021 Oct 06;22(19).
    PMID: 34639164 DOI: 10.3390/ijms221910816
    Hyperglycemia is a condition with high glucose levels that may result in dyslipidemia. In severe cases, this alteration may lead to diabetic retinopathy. Numerous drugs have been approved by officials to treat these conditions, but usage of any synthetic drugs in the long term will result in unavoidable side effects such as kidney failure. Therefore, more emphasis is being placed on natural ingredients due to their bioavailability and absence of side effects. In regards to this claim, promising results have been witnessed in the usage of Ipomoea batatas (I. batatas) in treating the hyperglycemic and dyslipidemic condition. Thus, the aim of this paper is to conduct an overview of the reported effects of I. batatas focusing on in vitro and in vivo trials in reducing high glucose levels and regulating the dyslipidemic condition. A comprehensive literature search was performed using Scopus, Web of Science, Springer Nature, and PubMed databases to identify the potential articles on particular topics. The search query was accomplished based on the Boolean operators involving keywords such as (1) Beneficial effect OR healing OR intervention AND (2) sweet potato OR Ipomoea batatas OR traditional herb AND (3) blood glucose OR LDL OR lipid OR cholesterol OR dyslipidemia. Only articles published from 2011 onwards were selected for further analysis. This review includes the (1) method of intervention and the outcome (2) signaling mechanism involved (3) underlying mechanism of action, and the possible side effects observed based on the phytoconstiuents isolated. The comprehensive literature search retrieved a total of 2491 articles using the appropriate keywords. However, on the basis of the inclusion and exclusion criteria, only 23 articles were chosen for further review. The results from these articles indicate that I. batatas has proven to be effective in treating the hyperglycemic condition and is able to regulate dyslipidemia. Therefore, this systematic review summarizes the signaling mechanism, mechanism of action, and phytoconstituents responsible for those activities of I. batatas in treating hyperglycemic based on the in vitro and in vivo study.
    Matched MeSH terms: Ipomoea batatas/chemistry*
  10. Mohd Nawi N, Muhamad II, Mohd Marsin A
    Food Sci Nutr, 2015 Mar;3(2):91-9.
    PMID: 25838887 DOI: 10.1002/fsn3.132
    This study focuses on the impact of different wall materials on the physicochemical properties of microwave-assisted encapsulated anthocyanins from Ipomoea batatas. Using the powder characterization technique, purple sweet potato anthocyanin (PSPAs) powders were analysed for moisture content, water activity, dissolution time, hygroscopicity, color and morphology. PSPAs were produced using different wall materials: maltodextrin (MD), gum arabic (GA) and a combination of gum arabic and maltodextrin (GA + MD) at a 1:1 ratio. Each of the wall materials was homogenized to the core material at a core/wall material ratio of 5 and were microencapsulated by microwave-assisted drying at 1100 W. Results indicated that encapsulated powder with the GA and MD combination presented better quality of powder with the lowest value of moisture content and water activity. With respect to morphology, the microcapsule encapsulated with GA + MD showed several dents in coating surrounding its core material, whereas other encapsulated powders showed small or slight dents entrapped onto the bioactive compound. Colorimetric analysis showed changes in values of L, a*, b*, hue and chroma in the reconstituted powder compared to the initial powder.
    Matched MeSH terms: Ipomoea batatas
  11. Golkhandan E, Kamaruzaman S, Sariah M, Abidin MAZ, Nazerian E, Yassoralipour A
    Plant Dis, 2013 May;97(5):685.
    PMID: 30722205 DOI: 10.1094/PDIS-08-12-0759-PDN
    In August 2011, sweet potato (Ipomoea batatas), tomato (Solanum lycopersicum), and eggplant (S. melongena) crops from major growing areas of the Cameron highlands and Johor state in Malaysia were affected by a soft rot disease. Disease incidence exceeded 80, 75, and 65% in severely infected fields and greenhouses of sweet potato, tomato, and eggplant, respectively. The disease was characterized by dark and small water-soaked lesions or soft rot symptoms on sweet potato tubers, tomato stems, and eggplant fruits. In addition, extensive discoloration of vascular tissues, stem hollowness, and water-soaked, soft, dark green lesions that turned brown with age were observed on the stem of tomato and eggplant. A survey was performed in these growing areas and 22 isolates of the pathogen were obtained from sweet potato (12 isolates), tomato (6 isolates), and eggplant (4 isolates) on nutrient agar (NA) and eosin methylene blue (EMB) (4). The cultures were incubated at 27°C for 2 days and colonies that were emerald green on EMB or white to gray on NA were selected for further studies. All bacterial cultures isolated from the survey exhibited pectolytic ability on potato slices. These bacterial isolates were gram negative; rod shaped; N-acetylglucosaminyl transferase, gelatin liquefaction, and OPNG positive; and were also positive for acid production from D-galactose, lactosemelibiose, raffinose, citrate, and trehalose. They were negative for indol production, phosphatase activity, reducing substances from sucrose, and negative for acid production from maltose, sorbitol, inositol, inolin, melezitose, α-mathyl-D-glocoside, and D-arabitol. The bacteria did not grow on NA at 37°C. Based on these biochemical and morphological assays, the pathogen was identified as Pectobacterium wasabiae (2). In addition, DNA was extracted and PCR assay with two primers (16SF1 and 16SR1) was performed (4). Partial sequences of 16S rRNA (GenBank Accession Nos. JQ665714, JX494234, and JX513960) of sweet potato, tomato, and eggplant, respectively, exhibited a 99% identity with P. wasabiae strain SR91 (NR_026047 and NR_026047.1). A pathogenicity assay was carried out on sweet potato tubers (cv. Oren), tomato stems (cv. 152177-A), and eggplant fruits (cv. 125066x) with 4 randomly representative isolates obtained from each crop. Sweet potato tubers, tomato stems, and eggplant fruits (4 replications) were sanitized in 70% ethyl alcohol for 30 s, washed and rinsed in sterile distilled water, and needle punctured with a bacterial suspension at a concentration of 108 CFU/ml. Inoculated tubers, stems, and fruits were incubated in a moist chamber at 90 to 100% RH for 72 h at 25°C when lesions were measured. All inoculated tubers, stems, and fruits exhibited soft rot symptoms after 72 h similar to those observed in the fields and greenhouses and the same bacteria were consistently reisolated. Symptoms were not observed on controls. The pathogenicty test was repeated with similar results. P. wasabiae have been previously reported to cause soft rot on Japanese horseradish (3), and aerial stem rot on potato in New Zealand (4), the U.S. (2), and Iran (1). To our knowledge, this is the first report of sweet potato, tomato, and eggplant soft rot caused by P. wasabiae in Malaysia. References: (1) S. Baghaee-Ravari et al. Eur. J. Plant Pathol. 129:413, 2011. (2) S. De Boer and A. Kelman. Page 56 in: Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd ed. N. Schaad et al., eds. APS Press, St. Paul, 2001. (3) M. Goto et al. Int. J. Syst. Bacteriol. 37:130, 1987. (4) A. R. Pitman et al. Eur. J. Plant Pathol. 126:423, 2010.
    Matched MeSH terms: Ipomoea batatas
  12. Elgadir MA, Bakar J, Zaidul ISM, Rahman RA, Abbas KA, Hashim DM, et al.
    Compr Rev Food Sci Food Saf, 2009 Jul;8(3):195-201.
    PMID: 33467796 DOI: 10.1111/j.1541-4337.2009.00078.x
      This review article highlights the thermal behaviors of selected starches that were studied using differential scanning calorimetery (DSC) with data shown in various research publications. The starches of sago, potato, sweet potato, cassava, yam, and corn are included in this overview. Our examinations indicate that thermal properties are highly affected by the type of starch, its amylose/amylopectin content, and the presence of other food ingredients such as sugar, sodium chloride, water, milk, hydrocolloids, and meat. When the heating temperatures of the starches were increased, the DSC measurements also showed an increase in the temperatures of the gelatinization (onset [To ], peak [Tp ], and conclusion [Tc ]). This may be attributed to the differences in the degree of crystallinity of the starch, which provides structural stability and makes the granule more resistant to gelatinization.
    Matched MeSH terms: Ipomoea batatas
  13. Mohd Hanim, A.B., Chin, N.L., Yusof, Y.A.
    MyJurnal
    Proximate, functional and pasting properties of a new variety of sweet potato, VitAto, flour, known for its high vitamin A contents, were compared with two other commercial sweet potatoes, Bukit Naga and Okinawan, flour available in Malaysia. The recoveries of each sweet potato from milling were not significantly different at about 20% but in proximate analysis, the VitAto presented the highest protein (5.7%) and dietary fiber (14.8%) contents with more energy 399.6 kcal/100 g produced. The VitAto flour has average particle size of 132.04 μm. The pasting temperature of the VitAto flour was 65oC, with highest setback and trough viscosity values of 530.90 and 197.20 mPa.s, respectively. The flour is classified as easy flowing and stable powders. This study provides information which helps in the handling, packing and storage of sweet potato flours. It also shows that the VitAto flour has an array of functional, pasting and proximate properties that can facilitate its uses in many areas with better nutritional properties.
    Matched MeSH terms: Ipomoea batatas
  14. Shariffa, Y.N., Uthumporn, U., Karim, A.A., Zaibunnisa, A.H
    MyJurnal
    This study investigated the effect of annealing treatment (at 50°C for 72 h) on hydrolysis of tapioca and sweet potato starches using a raw starch hydrolyzing enzyme namely STARGEN 001 (a blend from fungal α-amylase and glucoamylase) at sub-gelatinization temperature (35°C) for 24 h. The degree of hydrolysis of the starches was evaluated based on the dextrose equivalent (DE) value. The hydrolyzed starches were then characterized in terms of its morphology, swelling power and solubility, gelatinization and pasting properties, amylose content and x-ray diffraction pattern. After 24 h of hydrolysis, annealed starches were hydrolyzed to a greater degree with higher DE value compared to native starches (40% vs 33% for tapioca; and 29% vs 24% for sweet potato starch). Scanning electron microscopy (SEM) micrographs revealed a more porous granules and rougher surface in annealed starches than their native counterparts. The swelling power and solubility of annealed starches decreased significantly. Annealing was found to affect the pasting properties of the starches appreciably and increase the starch gelatinization temperature. The amylose content in hydrolyzed annealed tapioca and sweet potato starches increased while no significant changes observed in the X-ray diffraction of those starches. This study shows that the annealing treatment can be used as a way to increase the degree of hydrolysis of tapioca and sweet potato starches at sub-gelatinization temperature using a raw starch hydrolyzing enzyme.
    Matched MeSH terms: Ipomoea batatas
  15. Ooi CP, Loke SC
    PMID: 24000051 DOI: 10.1002/14651858.CD009128.pub3
    BACKGROUND: Sweet potato (Ipomoea batatas) is among the most nutritious subtropical and tropical vegetables. It is also used in traditional medicine practices for type 2 diabetes mellitus. Research in animal and human models suggests a possible role of sweet potato in glycaemic control.

    OBJECTIVES: To assess the effects of sweet potato for type 2 diabetes mellitus.

    SEARCH METHODS: We searched several electronic databases, including The Cochrane Library (2013, Issue 1), MEDLINE, EMBASE, CINAHL, SIGLE and LILACS (all up to February 2013), combined with handsearches. No language restrictions were used.

    SELECTION CRITERIA: We included randomised controlled trials (RCTs) that compared sweet potato with a placebo or a comparator intervention, with or without pharmacological or non-pharmacological interventions.

    DATA COLLECTION AND ANALYSIS: Two authors independently selected the trials and extracted the data. We evaluated risk of bias by assessing randomisation, allocation concealment, blinding, completeness of outcome data, selective reporting and other potential sources of bias.

    MAIN RESULTS: Three RCTs met our inclusion criteria: these investigated a total of 140 participants and ranged from six weeks to five months in duration. All three studies were performed by the same trialist. Overall, the risk of bias of these trials was unclear or high. All RCTs compared the effect of sweet potato preparations with placebo on glycaemic control in type 2 diabetes mellitus. There was a statistically significant improvement in glycosylated haemoglobin A1c (HbA1c) at three to five months with 4 g/day sweet potato preparation compared to placebo (mean difference -0.3% (95% confidence interval -0.6 to -0.04); P = 0.02; 122 participants; 2 trials). No serious adverse effects were reported. Diabetic complications and morbidity, death from any cause, health-related quality of life, well-being, functional outcomes and costs were not investigated.

    AUTHORS' CONCLUSIONS: There is insufficient evidence about the use of sweet potato for type 2 diabetes mellitus. In addition to improvement in trial methodology, issues of standardization and quality control of preparations - including other varieties of sweet potato - need to be addressed. Further observational trials and RCTs evaluating the effects of sweet potato are needed to guide any recommendations in clinical practice.

    Matched MeSH terms: Ipomoea batatas/chemistry*
  16. Yeni Y, Supandi S, Dwita LP, Suswandari S, Shaharun MS, Sambudi NS
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S836-S840.
    PMID: 33828386 DOI: 10.4103/jpbs.JPBS_103_20
    Background: Inflammatory mediators produced by cyclooxygenase (COX) and lipoxygenase (LOX) pathways are responsible for many human diseases, such as cancer, arthritis, and neurological disorders. Flavonoid-containing plants, such as Ipomoea batatas leaves, have shown potential anti-inflammatory activity.

    Objectives: This study aimed to predict the actions of 10 compounds in I. batatas leaves, which are YGM-0a [cyanidin 3-0-sophoroside-5-0-glucosede], YGM-0f [cyanidin 3-O-(2-0-(6-0-(E)-p-coumaroyl-β-D-glucopyranosyl)-β-D-glucopyranoside)-5-0-β-D-glucopyranoside], YGM-1a [cyanidin 3-(6,6'-caffeylp-hydroxybenzoylsophoroside) -5-glucoside], YGM-1b [cyanidin 3-(6,6'-dicaffeylsophor-oside)-5-glucoside], YGM-2 [cyanidin 3-(6-caffeylsophoroside)-5-glucoside], YGM-3 [cyanidin 3-(6,6'-caffeyl-ferulylsophoroside)-5-glucoside], YGM-4b [peonidin 3-(6,6'-dicaffeylsophoroside)-5- glucoside], YGM-5a [peonidin 3-(6,6'-caffeylphydroxybenzo-ylsophoroside)-5-gluco-side], YGM-5b [cyanidin 3-6-caffeylsophoroside)-5-glucosede], and YGM-6 [peonidin 3-(6,6'-caffeylferulylsophoroside)-5-glucoside] as LOX inhibitors, and also predict the stability of ligand-LOX complex.

    Materials and Methods: The compounds were screened through docking studies using PLANTS. Also, the molecular dynamics simulation was conducted using GROMACS at 310K.

    Results: The results showed that the most significant binding affinity toward LOX was shown by YGM-0a and YGM-0a, and the LOX complex in molecular dynamics simulation showed stability for 20 ns.

    Conclusion: Based on Docking Studies and Molecular Dynamics Simulation of I. Batatas Leaves compounds, YGM-0a was shown to be the most probable LOX inhibitor.

    Matched MeSH terms: Ipomoea batatas
  17. Karim AA, Tie AP, Manan DMA, Zaidul ISM
    Compr Rev Food Sci Food Saf, 2008 Jul;7(3):215-228.
    PMID: 33467803 DOI: 10.1111/j.1541-4337.2008.00042.x
      The common industrial starches are typically derived from cereals (corn, wheat, rice, sorghum), tubers (potato, sweet potato), roots (cassava), and legumes (mung bean, green pea). Sago (Metroxylon sagu Rottb.) starch is perhaps the only example of commercial starch derived from another source, the stem of palm (sago palm). Sago palm has the ability to thrive in the harsh swampy peat environment of certain areas. It is estimated that there are about 2 million ha of natural sago palm forests and about 0.14 million ha of planted sago palm at present, out of a total swamp area of about 20 million ha in Asia and the Pacific Region, most of which are under- or nonutilized. Growing in a suitable environment with organized farming practices, sago palm could have a yield potential of up to 25 tons of starch per hectare per year. Sago starch yield per unit area could be about 3 to 4 times higher than that of rice, corn, or wheat, and about 17 times higher than that of cassava. Compared to the common industrial starches, however, sago starch has been somewhat neglected and relatively less attention has been devoted to the sago palm and its starch. Nevertheless, a number of studies have been published covering various aspects of sago starch such as molecular structure, physicochemical and functional properties, chemical/physical modifications, and quality issues. This article is intended to piece together the accumulated knowledge and highlight some pertinent information related to sago palm and sago starch studies.
    Matched MeSH terms: Ipomoea batatas
  18. Cheow, C.S., Noorakmar, A.W., Norizzah, A.R., Mohd Zahid, A., Ruzaina, I.
    MyJurnal
    The effects of orange sweet potato flour addition to tapioca starch on the expansion, oil absorption,
    bulk density, water absorption index (WAI), water solubility index (WSI), hardness and colour of fried extruded fish crackers were investigated. The microstructure properties were assessed by Field Emission Scanning Electron Microscope (FESEM) and the sensory properties of fried extruded fish crackers were determined by quantitative descriptive analysis method. The shape and texture of the product were similar to that of normal breakfast cereal. Light brownish and slightly harder texture was obtained with addition of orange sweet potato flour to tapioca starch in the fried extruded fish crackers. The bulk density and water solubility index (WSI) increased with the increase in orange sweet potato flour addition. However, water absorption index (WAI), linear expansion, expansion ratio, volume expansion and oil absorption decreased as the amount of orange sweet potato increased. The microstructure studies revealed that fried extruded fish crackers with high percentage of orange sweet potato flour had small air cells and thick cell wall. The fried extruded fish crackers with 30% fish, 14% orange sweet potato flour and 56% tapioca starch had high crispiness score and accepted by the trained panellists.
    Matched MeSH terms: Ipomoea batatas
  19. MyJurnal
    This study aims to determine the frequency and density of potentially pathogenic Vibrio parahaemolyticus, defined as those possessing thermostable-direct hemolysin (tdh) and/or tdh-related hemolysin (trh) genes, in raw salad vegetables at retail level in Selangor, Malaysia. A combination of Most Probable Number - Polymerase Chain Reaction (MPN-PCR) method was applied to detect the presence of tdh and/or trh gene-possessing V. parahaemolyticus and to enumerate their density in the samples. A total of 276 samples of vegetables commonly eaten raw in Malaysia (Cabbage = 30; Carrot = 31; Cucumber = 28; Four winged bean = 26; Indian pennywort = 17; Japanese parsley = 21; Lettuce = 16; Long bean = 32; Sweet potato = 29; Tomato = 38; Wild cosmos = 8) were analyzed. The samples were purchased from two supermarkets (A and B) and two wet markets (C and D). With the MPN-PCR technique, about 12.0% of the samples were positive for the presence of V. parahaemolyticus tdh-positive, with maximum densities of up to 39 MPN/g. The total frequency of V. parahaemolyticus trh-positive in the samples was 10.1%, with maximum concentration 15 MPN/g. V. parahaemolyticus tdh-positive was most prevalent in samples from Wet Market C (20.78%) and also in vegetable type Oenanthe stolonifera (Japanese parsley) with 19.0%, while V. parahaemolyticus trhpositive was predominant in samples from Wet Market D (16.7%) and was most frequent in both Oenanthe stolonifera (Japanese parsley) and Cucumis sativus (Cucumber) with 14.3% prevalence for each type. The results highlighted the fact that raw vegetables could be contaminated with virulent V. parahaemolyticus and could act as a transmission route, thus poses risk to consumers from the consumption of raw vegetables. To the author’s knowledge, this is the first assessment of V. parahaemolyticus carrying tdh and trh genes in raw
    vegetables from retail outlets in Malaysia.
    Matched MeSH terms: Ipomoea batatas
  20. Hasnah Haron, Osman Hassan, Mamot Said
    This study comprised of physicochemical characterizations of starch extracted from Msp94 sweet potato tuber and production of high fructose glucose syrup from the starch. Msp94 sweet potato starch consisted of 7.3% water, 0.2% protein, 0.4% fat, 1.3% total ash, 94.8% total carbohydrates, 83.0% starch and 20.6% apparent amylose. The starch granules were spherical, polygonal and irregular in shapes with the size of 13-14 mm. Enzymatic hydrolysis of Msp94 sweet potato starch for 24,48, 72 hours, using a mixture of amyglucosidase-pullulanase enzymes during saccharification process, produced starch hydrolysates with dextrose equivalent (DE) of 94.8, 99.1, 99.3 respectively. This is followed by reduction in viscosity of the starch hydrolysates. Conversion of the Msp94 starch to percent of glucose after hydrolysing for 24,48 and 72 hours were 97.1%, 109.5% and 103.2%, respectively. Msp94 starch hydrolysates was then purified using three types of ion exchange resins and isomerized to highfructose syrup using glucose isomerase enzyme (Sweetzyme T). Thefructose content in isomerized Msp94 syrup was (43.8-46.5%) was comparable to the fructose content (44%) in commercial High Fructose Corn Syrup (HFCS) 42.
    [Kajian ini merangkumi pencirian fizikokimia kanji yang diekstrak daripada ubi keledek Msp94 dan penghasilan sirap glukosa berfruktosa tinggi daripada kanji ini. Kanji ubi keledek Msp94 mengandungi 7.3% air, 0.2% protein, 0.4% lemak, 1.3% abu total, 94.8% karbohidrat total, 83.0% kanji dan 20.6% amilosa ketara. Purata saiz granul kanji adalah 13-14 mm, berbentuk bulat, poligon dan bentuk yang tidak tetap. Hidrolisis berenzim menggunakan gabungan enzim glukoamilase-pululanase dalam proses sakarifikasi, yang dijalankan ke atas kanji ubi keledek Msp94 selama 24, 48, 72 jam menghasilkan hidrolisat kanji dengan setaraan dekstrosa (DE) masing-masing pada 94.8, 99.1, 99.3. 1ni diikuti dengan kelikatan hidrolisat kanji yang semakin menurun. Penukaran kanji Msp94 kepada peratus glukosa adalah sebanyak 97.1 %, 109.5% dan 103.2% setelah dihidrolisis selama 24,48 dan 72 jam. Hidrolisat kanji Msp94 ditulenkan menggunakan tiga jenis resin penukar ion dan diisomer kepada sirap berfruktosa tinggi menggunakan enzim glukosa isomerase (Sweetzyme T). Kandungan fruktosa (43.8-46.5%) dalam sirap Msp94 yang telah diisomer adalah setara dengan kandunganfruktosa (44%) dalam sirap komersial, High Fructose Corn Syrup (HFCS) 42].
    Matched MeSH terms: Ipomoea batatas
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links