METHODS: 50 asymptomatic (subjects have remained leukemia-free since treatment cessation) CLS and 50 healthy controls were recruited in this cross-sectional study. Of 50 CLS, 44 had acute lymphoblastic leukemia and 6 had acute myeloid leukemia. G-banded karyotyping was performed on unstimulated peripheral blood leukocytes of all subjects.
RESULTS: CLS had significantly higher occurrence of karyotypic abnormalities compared to controls. Five CLS harbored six nonclonal abnormalities (mostly aneuploidy) while none were found in controls.
CONCLUSION: Subpopulations with nonclonal chromosomal aberrations were present in peripheral blood leukocytes of our cohort of childhood leukemia long-term survivors.
RESULTS: Karyotypic analysis confirmed that all 93 animals phenotypically identified as swamp buffaloes with 48 chromosomes, all 7 as crossbreds with 49 chromosomes, and all 5 as murrah buffaloes with 50 chromosomes. The D-loop of mitochondrial DNA analysis showed that 10 haplotypes were observed with haplotype diversity of 0.8000 ± 0.089. Sequence characterization revealed 72 variables sites in which 67 were parsimony informative sites with sequence diversity of 0.01906. The swamp and murrah buffaloes clearly formed 2 different clades in the phylogenetic tree, indicating clear maternal divergence from each other. The crossbreds were grouped within the swamp buffalo clade, indicating the dominant maternal swamp buffalo gene in the crossbreds.
CONCLUSION: Thus, the karyotyping could be used to differentiate the water buffaloes while genotypic analysis could be used to characterize the water buffaloes and their crossbreds.