Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Ng YJ, Tham PE, Khoo KS, Cheng CK, Chew KW, Show PL
    Bioprocess Biosyst Eng, 2021 Sep;44(9):1807-1818.
    PMID: 34009462 DOI: 10.1007/s00449-021-02577-9
    Virgin coconut oil is a useful substance in our daily life. It contains a high percentage of lauric acid which has many health benefits. The current industry has developed several methods to extract the oil out from the coconut fruit. This review paper aims to highlight several common extraction processes used in modern industries that includes cold extraction, hot extraction, low-pressure extraction, chilling, freezing and thawing method, fermentation, centrifugation, enzymatic extraction and supercritical fluid carbon dioxide. Different extraction methods will produce coconut oil with different yields and purities of lauric acid, thus having different uses and applications. Challenges that are faced by the industries in extracting the coconut oil using different methods of extraction are important to be explored so that advancement in the oil extraction technology can be done for efficient downstream processing. This study is vital as it provides insights that could enhance the production of coconut oil.
    Matched MeSH terms: Lauric Acids/isolation & purification; Lauric Acids/chemistry*
  2. Saarani NN, Jamuna-Thevi K, Shahab N, Hermawan H, Saidin S
    Dent Mater J, 2017 May 31;36(3):260-265.
    PMID: 28111388 DOI: 10.4012/dmj.2016-177
    A guided bone regeneration (GBR) membrane has been extensively used in the repair and regeneration of damaged periodontal tissues. One of the main challenges of GBR restoration is bacterial colonization on the membrane, constitutes to premature membrane degradation. Therefore, the purpose of this study was to investigate the antibacterial efficacy of triple-layered GBR membrane composed of poly(lactic-co-glycolic acid) (PLGA), nanoapatite (NAp) and lauric acid (LA) with two types of Gram-negative periodontal bacteria, Fusobacterium nucleatum and Porphyromonas gingivalis through a disc diffusion and bacterial count tests. The membranes exhibited a pattern of growth inhibition and killing effect against both bacteria. The increase in LA concentration tended to increase the bactericidal activities which indicated by higher diameter of inhibition zone and higher antibacterial percentage. It is shown that the incorporation of LA into the GBR membrane has retarded the growth and proliferation of Gram-negative periodontal bacteria for the treatment of periodontal disease.
    Matched MeSH terms: Lauric Acids*
  3. Anis SNS, Mohd Annuar MS, Simarani K
    Biotechnol Appl Biochem, 2018 Nov;65(6):784-796.
    PMID: 29806235 DOI: 10.1002/bab.1666
    Biosynthesis and in vivo depolymerization of intracellular medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 grown on lauric acid were studied. Highest mcl-PHA fraction (>50 % of total biomass) and cell concentration (8 g L-1 ) were obtained at carbon-to-nitrogen (C/N) ratio 20, starting cell concentration 1 g L-1 , and 48 H fermentation. The mcl-PHA comprised of 3-hydroxyhexanoate (C6 ), 3-hydroxyoctanote (C8 ), 3-hydroxydecanoate (C10 ), and 3-hydroxydodecanoate (C12 ) monomers. In vivo action was studied in a mineral liquid medium without carbon source, and in different buffer solutions with varied pH, molarity, ionic strength, and temperature. The monomer liberation rate reflected the mol percentage distribution of the initial polymer subunit composition. Rate and percentage of in vivo depolymerization were highest in 0.2 M Tris-HCl buffer (pH 9, strength = 0.2 M, 30 °C) at 0.21 g L-1  H-1 and 98.6 ± 1.3 wt%, respectively. There is a congruity vis-à-vis to specific buffer type, molarity, pH, ionic strength, and temperature values for superior in vivo depolymerization activities. Direct products from in vivo depolymerization matched the individual monomeric composition of native mcl-PHA. It points to exo-type reaction for the in vivo process, and potential biological route to chiral molecules.
    Matched MeSH terms: Lauric Acids/chemistry
  4. Anis SNS, Mohamad Annuar MS, Simarani K
    Prep Biochem Biotechnol, 2017 Sep 14;47(8):824-834.
    PMID: 28635367 DOI: 10.1080/10826068.2017.1342266
    In vivo and in vitro depolymerizations of intracellular medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA) in Pseudomonas putida Bet001 grown on lauric acid was studied. Both processes were studied under optimum conditions for mcl-PHA depolymerization viz. 0.2 M Tris-HCl buffer, pH 9, ionic strength (I) = 0.2 M at 30°C. For in vitro depolymerization studies, cell-free system was obtained from lysing bacterial cells suspension by ultrasonication at optimum conditions (frequency 37 kHz, 30% of power output, <25°C for 120 min). The comparison between in vivo and in vitro depolymerizations of intracellular mcl-PHA was made. In vitro depolymerization showed lower depolymerization rate but higher yield compared to in vivo depolymerization. The monomer liberation rate reflected the mol% distribution of the initial polymer subunit composition, and the resulting direct individual products of depolymerization were identical for both in vivo and in vitro processes. It points to exo-type reaction for both processes, and potential biological route to chiral molecules.
    Matched MeSH terms: Lauric Acids/metabolism
  5. Lee PC, Ho CC
    World J Microbiol Biotechnol, 1996 Jan;12(1):73-5.
    PMID: 24415093 DOI: 10.1007/BF00327805
    Palm and palm-kernel oils and their olein and stearin fractions were suitable as the main carbon sources for growth and production of clavulanic acid by Streptomyces clavuligerus. However, oleic and lauric acids were not utilized for growth. A spontaneous mutant, which was selected for higher cephamycin C production, also produced more clavulanic acid with these oils in the medium.
    Matched MeSH terms: Lauric Acids
  6. Mansor, T. S. T., Che Man, Y. B., Shuhaimi, M., Abdul Afiq, M. J., Ku Nurul, F. K. M.
    MyJurnal
    Virgin Coconut Oils (VCO) were prepared from fresh-dry (grated coconut route), chilling and thawing, enzymatic and fermentation method in this study. All of the VCO produced conformed physicochemically to the standards established by the Asian and Pacific Coconut Community (APCC) and Codex Alimentarius Commission. The highest FA (fatty acid) is lauric acid in all of the VCO and ranged from 46.36 – 48.42 %, while the principal TAG (triacylglycerol) is LaLaLa (La: Lauric) with 17.94 – 19.83 % of the total TAG. Tocopherol analysis showed the presence of beta, gamma and delta tocopherols at low levels. In all, the physicochemical, FA and TAG analyses of the VCO extracted from different methods showed some significant differences, while the tocopherol content does not differ significantly among the different types of extraction methods used.
    Matched MeSH terms: Lauric Acids
  7. Mohd Jaih, A.A., Abdul Rahman, R., Abdull Razis, A.F., Ariffin, A.A., Al-Awaadh, A., Suleiman, N.
    MyJurnal
    Oil is one of the major components of date seed alongside dietary fibre, carbohydrate, protein, moisture and ash. Therefore, the present work focused on the extraction of oil from five varieties of date seed using Soxhlet extraction method and subsequently characterised their physicochemical and antioxidant properties accordingly. Oil extracted from the seeds ranged between 8 to 9.8%, whereas the iodine values were between 48.7 to 55.5 g I2/100g. Furthermore, oleic and lauric acids were revealed as the main fatty acids present in the date seed oil, with LaOO (La: lauric acid; O: oleic acid) as the main triacylglycerol. The total phenolic content in the oil ranged from 7.96 to 17.72 mg GAE/g oil, while the antioxidant activity, expressed as EC50, ranged from 5.17 to 17.18 mg/mL. Additionally, the highest reducing activity was observed at 4mg/mL. Hence, oil characteristics are dependent on the type of date, thus indicating that different potential applications may be suggested.
    Matched MeSH terms: Lauric Acids
  8. Zzaman, W., Issara, U., Febrianto, N.F., Yang, T.A.
    International Food Research Journal, 2014;21(3):10191-1023.
    MyJurnal
    The study was conducted to investigate fatty acid composition, rheological properties and crystal formation of rambutan fat and cocoa butter. The results showed that lauric acid, palmitic acid, and stearic fatty acid in rambutan fat were less than cocoa butter, but oleic acid found almost the same. The crystal formation of cocoa butter was not complex at 25oC, while rambutan fat and their mixture shown complicated network of crystal form. The Newton, Bingham and Casson plastic rheological models was used to describe fat flow in this experiment and the result showed that rambutan fat had higher viscosity than cocoa fat. Based on the results the study recommended that mixture proportion up to 30% rambutan seed fat can be used as a cocoa butter substitute whereas higher proportion completely alters original cocoa butter properties. Therefore, there is feasibility of using the rambutan fat to substitute cocoa butter and the mixtures of the two fats in suitable proportion in chocolate manufacturing.
    Matched MeSH terms: Lauric Acids
  9. Jamuna-Thevi K, Saarani NN, Abdul Kadir MR, Hermawan H
    Mater Sci Eng C Mater Biol Appl, 2014 Oct;43:253-63.
    PMID: 25175212 DOI: 10.1016/j.msec.2014.07.028
    This paper discusses the successful fabrication of a novel triple-layered poly(lactic-co-glycolic acid) (PLGA)-based composite membrane using only a single step that combines the techniques of solvent casting and thermally induced phase separation/solvent leaching. The resulting graded membrane consists of a small pore size layer-1 containing 10 wt% non-stoichiometric nanoapatite (NAp)+1-3 wt% lauric acid (LA) for fibroblastic cell and bacterial inhibition, an intermediate layer-2 with 20-50 wt% NAp+1 wt% LA, and a large pore size layer-3 containing 30-100 wt% NAp without LA to allow bone cell growth. The synergic effects of 10-30 wt% NAp and 1 wt% LA in the membrane demonstrated higher tensile strength (0.61 MPa) and a more elastic behavior (16.1% elongation at break) in 3 wt% LA added membrane compared with the pure PLGA (0.49 MPa, 9.1%). The addition of LA resulted in a remarkable plasticizing effect on PLGA at 3 wt% due to weak intermolecular interactions in PLGA. The pure and composite PLGA membranes had good cell viability toward human skin fibroblast, regardless of LA and NAp contents.
    Matched MeSH terms: Lauric Acids/chemistry*
  10. Sundram K, Hayes KC, Siru OH
    Am J Clin Nutr, 1994 Apr;59(4):841-6.
    PMID: 8147328
    In a double-blind crossover study, 17 normocholesterolemic male volunteers were fed carefully designed whole-food diets in which 5% of energy was exchanged between palmitic (16:0) and lauric + myristic acids (12:0 + 14:0) whereas all other fatty acids were held constant. Resident males received each diet during separate 4-wk periods. The test diets supplied approximately 30% of energy as fat and 200 mg cholesterol/d. Compared with the 12:0 + 14:0-rich diet, the 16:0-rich diet produced a 9% lower serum cholesterol concentration, reflected primarily by a lower (11%) low-density-lipoprotein-cholesterol concentration and, to a lesser extent, high-density-lipoprotein cholesterol. No diet-induced changes were noted in the cholesterol content of other lipoproteins, nor did exchange of saturated fatty acids affect the triglyceride concentration in serum or lipoprotein fractions. These data indicate that a dietary 12:0 + 14:0 combination produces a higher serum cholesterol concentration than does 16:0 in healthy normocholesterolemic young men fed a low-cholesterol diet.
    Matched MeSH terms: Lauric Acids/pharmacology
  11. Idris CA, Sundram K
    Asia Pac J Clin Nutr, 2002;11 Suppl 7:S408-15.
    PMID: 12492627
    Nine cynomolgus monkeys were rotated randomly through four dietary treatments with each treatment lasting 6 weeks. A wash-out period of 4 weeks was maintained between each dietary rotation. The animals were fed diets containing 32% energy fat derived from palm olein (POL), lauric-myristic-rich oil blend (LM), American Heart Association (AHA) rich oil blend and hydrogenated soybean oil blend (trans). Diets were fed with (phase 1) or without (phase 2) the addition of dietary cholesterol (0.1%). In phase 1, when animals were fed without dietary cholesterol, plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) was significantly raised and high-density lipoprotein cholesterol (HDL-C) was significantly depressed by the trans diets relative to all other dietary treatments. The resulting LDL-C/HDL-C ratio was also significantly increased. The LM diet increased TC significantly relative to the AHA diet while LDL-C was significantly increased compared to both POL and AHA. Apolipoprotein (apo) B was not affected significantly by these dietary treatments. Apo A1 was significantly increased by POL relative to all other dietary treatments. The trans diet reduced apo A1 and the resulting apo B/A1 ratio was increased significantly by trans relative to all other dietary treatments. Addition of 0.1% dietary cholesterol to these diets almost doubled the plasma TC and LDL-C in all dietary treatments. However, HDL-C was only marginally higher with the addition of dietary cholesterol. The LM + C (cholesterol added) diet resulted in the highest TC and LDL-C that was significant compared to all other dietary treatments. Trans + C increased TC compared to POL + C and AHA + C diets while increases in the LDL-C did not attain significance. The addition of dietary cholesterol did not affect HDL-C between treatments whereas plasma triglycerides were significantly increased by the trans + C diet relative to all other treatments. Both the trans + C and LM + C diets increased apo B and decreased apo A1 relative to the POL + C and AHA + C diets. The resulting apo B/A1 ratio was similarly altered. These results affirm that the lauric + myristic acid combination, along with trans fatty acids, increased lipoprotein-associated coronary heart disease risk factors compared to either POL or AHA.
    Matched MeSH terms: Lauric Acids/administration & dosage; Lauric Acids/pharmacology*
  12. Altaf R, Asmawi MZ, Dewa A, Sadikun A, Umar MI
    Pharmacogn Rev, 2013 Jan;7(13):73-80.
    PMID: 23922460 DOI: 10.4103/0973-7847.112853
    Phaleria macrocarpa, commonly known as Mahkota dewa is a medicinal plant that is indigenous to Indonesia and Malaysia. Extracts of P. macrocarpa have been used since years in traditional medicine that are evaluated scientifically as well. The extracts are reported for a number of valuable medicinal properties such as anti-cancer, anti-diabetic, anti-hyperlipidemic, anti-inflammatory, anti-bacterial, anti-fungal, anti-oxidant and vasorelaxant effect. The constituents isolated from different parts of P. macrocarpa include Phalerin, gallic acid, Icaricide C, magniferin, mahkoside A, dodecanoic acid, palmitic acid, des-acetylflavicordin-A, flavicordin-A, flavicordin-D, flavicordin-A glucoside, ethyl stearate, lignans, alkaloids andsaponins. The present review is an up-to-date summary of occurrence, botanical description, ethnopharmacology, bioactivity and toxicological studies related to P. macrocarpa.
    Matched MeSH terms: Lauric Acids
  13. Noor NM, Abdul-Aziz A, Sheikh K, Somavarapu S, Taylor KMG
    Pharmaceutics, 2020 Oct 20;12(10).
    PMID: 33092119 DOI: 10.3390/pharmaceutics12100994
    Dutasteride, licensed as an oral medicine for the treatment of benign prostatic hypoplasia, has been investigated as a treatment for androgenic alopecia. In this study, the potential for dustasteride to be delivered topically in order to reduce systemic exposure, irritation of the skin, and also cytotoxicity was explored. Chitosan oligomer (CSO) was successfully synthesised with lauric acid as a coating for a dutasteride-loaded nanostructured lipid carriers (DST-NLCs) system. DST-NLCs were prepared using a combination of melt-dispersion and ultrasonication. These negatively charged NLCs (-18.0 mV) had a mean particle size of ~184 nm, which was not significantly increased (p > 0.05) when coated with lauric acid-chitosan oligomer (CSO-LA), whilst the surface charge changed to positive (+24.8 mV). The entrapment efficiency of DST-NLCs was 97%, and coated and uncoated preparations were physically stable for up to 180 days at 4-8 °C. The drug release was slower from DST-NLCs coated with CSO-LA than from uncoated NLCs, with no detectable drug permeation through full-thickness pig ear skin from either preparation. Considering the cytotoxicity, the IC50 values for the DST-NLCs, coated and uncoated with CSO-LA were greater than for dutasteride alone (p < 0.05). DST-NLCs and empty NLCs coated with CSO-LA at 25 µM increased the cell proliferation compared to the control, and no skin irritation was observed when the DST-NLC formulations were tested using EpiDerm™. The cell and skin uptake studies of coated and uncoated NLCs incorporating the fluorescent marker Coumarin-6 showed the time-dependent uptake of Coumarin-6. Overall, the findings suggest that DST-NLCs coated with CSO-LA represent a promising formulation strategy for dutasteride delivery for the treatment of androgenic alopecia, with a reduced cytotoxicity compared to that of the drug alone and lower irritancy than an ethanolic solution of dutasteride.
    Matched MeSH terms: Lauric Acids
  14. Hanini ‘Aina, Nik Nur Shamiha Nik Dzulkefli, Mohamed Rasny, Samer Al-Dhalli, Mohd Nizam, Eddy Yusuf, et al.
    MyJurnal
    The composition of ophthalmic preparation is administered topically to the eye in the form of a solution, suspension, ointment, gel or foam for the purpose of treating eye disease. Virgin Coconut Oil (VCO) has been one of the desired ingredients of choice, as its benefits as functional food oil is known among the public. The uniqueness of coconut oil is its fats and oils that contain the highest percentage of medium-chain fatty acids (MCFA), which have antimicrobial properties, such as lauric acid and capric acid. This study aimed to evaluate the antimicrobial effects of eye drop containing a different VCO concentration using the Kirby-Bauer test. The formulation of eye drop had 1.5%, 2% and 3% amount of virgin coconut oil, which was later added with all basic materials needed for eye drop. The samples were evaluated for its zone of inhibition (ZOI). The antimicrobial effects of eye drop formulation that contains 3% of VCO (F3) against Streptococcus pneumonia were similar with all control products (Eye Glo, Pred Forte, Cationorm), and antimicrobial effects of F3 against Staphylococcus aureus are better than Cationorm. It is noticeable that the higher the VCO content in the formulation, the better the antimicrobial effects of the eye drop. In conclusion, VCO possesses moisture, anti-inflammation, better anti-microbial properties, and it could be further formulated as a stable eye drop emulsion.
    Matched MeSH terms: Lauric Acids
  15. Neoh, B.K., Thang, Y.M., Zain, M.Z.M., Junaidi, A.
    MyJurnal
    Palm pressed fiber (PPF) is a by-product from oil extraction of oil palm fruits. It has unique characteristics resulting from the combination of palm mesocarp fiber, kernel shell and crushed kernel. The present study on different extraction methods for PPF indicated that conventional hexane cold extraction would be the more preferable method compared to soxhlet and reflux method due to the yield recovered (4.35%) and diacylglycerol (19.93% ± 0.07) obtained. Acylglycerol composition using cold extraction gave high Diaclyglycerol and Triacylglycerol (67.04% ± 0.05) with reasonable amount of Monoaclyglycerol / Free Fatty Acid (13.02% ± 0.02). Lauric acid which was not present in crude palm oil were found to be significant in PPF (5.89 to 9.09%), thus making this oil suitable for application in the food industry in products such as shortening and margarine.
    Matched MeSH terms: Lauric Acids
  16. Arlee, R., Suanphairoch, S., Pakdeechanuan, P.
    MyJurnal
    Chumphon Horticultural Research Centre (CHRC) is Thailand’s main coconut research unit. CHRC has developed three coconut cultivars: Sawi Hybrid No. 1 (Malayan Yellow Dwarf x West African Tall: MYD x WAT), Chumphon Hybrid No. 60 (Thai Tall: THT x WAT) and Chumphon Hybrid No. 2 (MYD x THT). This study compared some chemical components in virgin coconut oil (VCO) from coconut hybrids with their parents. The VCO was extracted by cold pressing and fermentation methods, and was analyzed for fatty acid profiles, triacylglycerol profile, acid value, tocopherol content, total phenolic content, and antioxidant activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) radicals. The findings showed that hybrids contained lauric acid ranging from 46.63 to 48.34% of total fatty acid. Chumphon 60 had the highest lauric acid content, 48.34% of total fatty acids, which was not significantly different (p > 0.05) from that of the parents. In contrast, the cultivars from MYD, Sawi 1 and Chumphon 2, had significantly greater lauric acid content than the parent MYD (p ≤ 0.05). Cold pressing and fermentation provided an oil extraction yield of 25 and 20%, respectively. The proportions of lauric acid in VCO from these two methods were not significantly different (p > 0.05), but the cold pressing method resulted in higher tocopherol content (p ≤ 0.05). The VCO of Chumphon 60 from the cold pressed method had tocopherol content close to that of the parent WAT (p > 0.05) but significantly higher than that of the other parent THT (p ≤ 0.05). In addition, it contained the highest total phenolic contents among the three cultivars, 57.89 mg GAE/100 g oil, leading to antioxidant activity with a low EC50 of 0.53 mg GAE/ml. Overall, the hybrid of WAT x THT, Chumphon 60, was outstanding among the cultivars; it had the highest levels of lauric acid, total phenolic compounds, and antioxidant activity.
    Matched MeSH terms: Lauric Acids
  17. Wibowo TY, Ridzuan Zakaria, Ahmad Zuhairi Abdullah
    Organomontmorillonites were synthesized by grafting cationic surfactants i.e quaternary ammonium compounds into the interlayer space and were characterized using XRD, FTIR and N2 adsorption/ desorption analysis. The organomontmorillonites were applied as catalyst for the esterification of glycerol (GL) with lauric acid (LA). The catalyst which had symmetrical onium salts (tetrabuthylammoniumbromide, TBAB) gave higher activity than that of unsymmetrical onium salts (cetyltrimethylammoniumbromide, CTAB). Over the TBAB-montmorillonite catalyst, glycerol monolaurate was obtained with a selectivity of about 80%, a lauric acid conversion of about 71% and a glycerol monolaurate yield of about 57%.
    Matched MeSH terms: Lauric Acids
  18. Lau SC, Lim HN, Basri M, Fard Masoumi HR, Ahmad Tajudin A, Huang NM, et al.
    PLoS One, 2014;9(8):e104695.
    PMID: 25127038 DOI: 10.1371/journal.pone.0104695
    In this work, lipase from Candida rugosa was immobilized onto chitosan/graphene oxide beads. This was to provide an enzyme-immobilizing carrier with excellent enzyme immobilization activity for an enzyme group requiring hydrophilicity on the immobilizing carrier. In addition, this work involved a process for the preparation of an enzymatically active product insoluble in a reaction medium consisting of lauric acid and oleyl alcohol as reactants and hexane as a solvent. This product enabled the stability of the enzyme under the working conditions and allowed the enzyme to be readily isolated from the support. In particular, this meant that an enzymatic reaction could be stopped by the simple mechanical separation of the "insoluble" enzyme from the reaction medium. Chitosan was incorporated with graphene oxide because the latter was able to enhance the physical strength of the chitosan beads by its superior mechanical integrity and low thermal conductivity. The X-ray diffraction pattern showed that the graphene oxide was successfully embedded within the structure of the chitosan. Further, the lipase incorporation on the beads was confirmed by a thermo-gravimetric analysis. The lipase immobilization on the beads involved the functionalization with coupling agents, N-hydroxysulfosuccinimide sodium (NHS) and 1-ethyl-(3-dimethylaminopropyl) carbodiimide (EDC), and it possessed a high enzyme activity of 64 U. The overall esterification conversion of the prepared product was 78% at 60 °C, and it attained conversions of 98% and 88% with commercially available lipozyme and novozyme, respectively, under similar experimental conditions.
    Matched MeSH terms: Lauric Acids/chemistry
  19. Serri NA, Kamaruddin AH, Long WS
    Bioprocess Biosyst Eng, 2006 Oct;29(4):253-60.
    PMID: 16868763
    Immobilized Candida rugosa lipase was used for the synthesis of citronellyl laurate from citronellol and lauric acid. Screening of different types of support (Amberlite MB-1 and Celite) for immobilization of lipase and solvent (n-hexane, n-heptane, and iso-octane) and optimization of reaction conditions, such as catalyst loading, effect of substrates molar ratio and temperature, have been studied. The maximum enzyme activity was obtained at 310 K. The immobilized C. rugosa lipase onto Amberlite MB-1 support was found to be the best support with a conversion of 89% of citronellyl laurate ester in iso-octane compared to Celite 545. Deactivation of C. rugosa lipase at 313, 318 and 323 K were observed. Ordered bi bi mechanism with dead end complex of lauric acid was found to fit the initial rate data and the kinetic parameters were obtained by non-linear regression analysis.
    Matched MeSH terms: Lauric Acids/chemistry*
  20. Nehdi IA, Sbihi HM, Tan CP, Rashid U, Al-Resayes SI
    J Food Sci, 2018 Mar;83(3):624-630.
    PMID: 29377104 DOI: 10.1111/1750-3841.14033
    This investigation aimed to evaluate the chemical composition and physicochemical properties of seed oils from 6 date palm (Phoenix. dactylifera L.) cultivars (Barhi, Khalas, Manifi, Rezeiz, Sulaj, and Sukkari) growing in Saudi Arabia and to compare them with conventional palm olein. The mean oil content of the seeds was about 7%. Oleic acid (48.67%) was the main fatty acid, followed by lauric acid (17.26%), stearic acid (10.74%), palmitic acid (9.88%), and linolenic acid (8.13%). The mean value for free fatty acids content was 0.5%. The P. dactylifera seed oil also exhibited a mean tocol content of 70.75 mg/100 g. α-Tocotrienol was the most abundant isomer (30.19%), followed by γ-tocopherol (23.61%), γ-tocotrienol (19.07%), and α-tocopherol (17.52%). The oils showed high thermal and oxidative stabilities. The findings indicate that date seed oil has the potential to be used in the food industry as an abundant alternative to palm olein.

    PRACTICAL APPLICATION: This study showed that date seed had great nutritional value due to which it can be used for food applications especially as frying or cooking oil. In addition, date oil has also potential to be used in cosmetic and pharmaceutical practices as well. The extraction of oil from Phoenix dactylifera seed on large scale can create positive socioeconomic benefits especially for rural communities and could also assist to resolve the environmental issues generated by excess date production in large scale date-producing countries such as Saudi Arabia.

    Matched MeSH terms: Lauric Acids/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links