Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Okuro PK, Tavernier I, Bin Sintang MD, Skirtach AG, Vicente AA, Dewettinck K, et al.
    Food Funct, 2018 Mar 01;9(3):1755-1767.
    PMID: 29508864 DOI: 10.1039/c7fo01775h
    In this study, the effect of lecithin (LEC) on the crystallization and gelation of fruit wax (FW) with sunflower oil was researched. A synergistic effect on the gel strength was observed at FW : LEC ratios of 75 : 25 and 50 : 50, compared to the corresponding single component formulations (100 : 0 and 0 : 100). Even below the critical gelling concentration (Cg) of FW, the addition of lecithin enabled gel formation. Lecithin affected the thermal behavior of the structure by delaying both crystallization and gel formation. The phospholipid acted as a crystal habit modifier changing the microstructure of the oleogel, as was observed by polarized light microscopy. Cryo-scanning electron microscopy revealed a similar platelet-like arrangement for both FW as a single oleogelator and FW in combination with LEC. However, a denser structure could be observed in the FW : LEC oleogelator mixture. Both the oil-binding capacity and the thixotropic recovery were enhanced upon lecithin addition. These improvements were attributed to the hydrogen bonding between FW and LEC, as suggested by Raman spectroscopy. We hypothesized that lecithin alters the molecular assembly properties of the FW due to the interactions between the polar moieties of the oleogelators, which consequently impacts the hydrophobic tail (re)arrangement in gelator-gelator and solvent-gelator interactions. The lipid crystal engineering approach followed here offered prospects of obtaining harder self-standing structures at a lower oleogelator concentration. These synergistic interactions provide an opportunity to reduce the wax concentration and, as such, the waxy mouthfeel without compromising the oleogel properties.
    Matched MeSH terms: Lecithins/chemistry*
  2. Yeap PK, Lim KO, Chong CS, Teng TT
    Chem Phys Lipids, 2008 Jan;151(1):1-9.
    PMID: 17963698
    As the packing structure of lipid molecules in the liposomes will vary in the presence of ions, it is expected that the density of lipid and the effective volume of lipid molecules in the dispersions will also vary, albeit minutely. Density measurements of lipid-water dispersions with the addition of Ca(2+) ions were determined accurately. The effect of Ca(2+) ions on the molecular packing structure of the liposomes was elucidated from the results obtained. The results for the density of the lecithin in the dispersions with and without the addition of Ca(2+) ions are, respectively, 1.0782 and 1.0579 g cm(-3) at 25 degrees C; and 1.0048 and 0.9961 g cm(-3) at 50 degrees C. The average values of the effective molecular volume of lecithin in the dispersions with and without the addition of Ca(2+) ions are, respectively, 1.131E-21 and 1.152E-21 cm(3) at 25 degrees C; and 1.213E-21 and 1.224E-21 cm(3) at 50 degrees C.
    Matched MeSH terms: Lecithins/chemistry*
  3. Bin Sintang MD, Danthine S, Patel AR, Rimaux T, Van De Walle D, Dewettinck K
    J Colloid Interface Sci, 2017 Oct 15;504:387-396.
    PMID: 28586736 DOI: 10.1016/j.jcis.2017.05.114
    In order to modify the self-assembly of sucrose esters (SEs) in sunflower oil, we added sunflower lecithin (SFL) as co-surfactant. It is hypothesized that SFL modifies the self-assembly of SEs by interrupting the extensive hydrogen bonding between SEs monomers. The addition of SFL into SEs induced gelation of the mixed surfactant system oleogels at all studied ratios. The 7:3 SEs:SFL combination showed enhanced rheological properties compared to the other studied ratios, which suggests better molecular ordering induced by SFL. The modifications might have been caused by interference in the hydrogen bonding, connecting the polar heads of SEs molecules in the presence of SFL. This effect was confirmed by thermal behavior and small angle X-ray diffraction (SAXD) analysis. From the crystallization and melting analyses, it was shown that the peak temperature, shape and enthalpy decreased as the SFL ratio increases. Meanwhile, the bi-component oleogels exhibited new peaks in the SAXD profile, which imply a self-assembly modification. The microscopic study through polarized and electrons revealed a change in the structure. Therefore, it can be concluded that a synergistic effect between SEs and SFL, more particularly at 7:3 ratio, towards sunflower oil structuring could be obtained. These findings shed light for greater applications of SEs as structuring and carrier agent in foods and pharmaceutical.
    Matched MeSH terms: Lecithins/chemistry*
  4. Samad MY, Salleh AB, Razak CN, Ampon K, Yunus WM, Basri M
    World J Microbiol Biotechnol, 1990 Dec;6(4):390-4.
    PMID: 24430138 DOI: 10.1007/BF01202120
    Two strains ofRhizopus rhizopodiformis that produced lipases in broth culture were isolated. Maximum lipase production (23 U/ml) was obtained after 72 h culture. Both the crude lipases were stable at 50°C for 30 min and at 45°C for 24 h. Maltose was the best carbon source and peptone the best nitrogen source for the production of lipases. Only glycerol and lecithin stimulated lipase production further.
    Matched MeSH terms: Lecithins
  5. Loo YS, Zahid NI, Madheswaran T, Ikeno S, Nurdin A, Mat Azmi ID
    Mol Pharm, 2023 Sep 04;20(9):4611-4628.
    PMID: 37587099 DOI: 10.1021/acs.molpharmaceut.3c00333
    Lyotropic liquid crystalline nanoassemblies (LLCNs) are internally self-assembled (ISA)-somes formed by amphiphilic molecules in a mixture comprising a lipid, stabilizer, and/or surfactant and aqueous media/dispersant. LLCNs are unique nanoassemblies with versatile applications in a wide range of biomedical functions. However, they comprise a nanosystem that is yet to be fully explored for targeted systemic treatment of breast cancer. In this study, LLCNs proposed for gemcitabine and thymoquinone (Gem-TQ) co-delivery were prepared from soy phosphatidylcholine (SPC), phytantriol (PHYT), or glycerol monostearate (MYVR) in optimized ratios containing a component of citric and fatty acid ester-based emulsifier (Grinsted citrem) or a triblock copolymer, Pluronic F127 (F127). Hydrodynamic particle sizes determined were below 400 nm (ranged between 96 and 365 nm), and the series of nanoformulations displayed negative surface charge. Nonlamellar phases identified by small-angle X-ray scattering (SAXS) profiles comprise the hexagonal, cubic, and micellar phases. In addition, high entrapment efficiency that accounted for 98.3 ± 0.1% of Gem and 99.5 ± 0.1% of TQ encapsulated was demonstrated by the coloaded nanocarrier system, SPC/citrem/Gem-TQ hexosomes. Low cytotoxicity of SPC-citrem hexosomes was demonstrated in MCF10A cells consistent with hemo- and biocompatibility observed in zebrafish (Danio rerio) embryos for up to 96 h postfertilization (hpf). SPC/citrem/Gem-TQ hexosomes demonstrated IC50 of 24.7 ± 4.2 μM in MCF7 breast cancer cells following a 24 h treatment period with the moderately synergistic interaction between Gem and TQ retained (CI = 0.84). Taken together, biocompatible SPC/citrem/Gem-TQ hexosomes can be further developed as a multifunctional therapeutic nanodelivery approach, plausible for targeting breast cancer cells by incorporation of targeting ligands.
    Matched MeSH terms: Lecithins
  6. Chin GS, Todo H, Kadhum WR, Hamid MA, Sugibayashi K
    Chem Pharm Bull (Tokyo), 2016;64(12):1666-1673.
    PMID: 27904075
    The current investigation evaluated the potential of proniosome as a carrier to enhance skin permeation and skin retention of a highly lipophilic compound, α-mangostin. α-Mangostin proniosomes were prepared using the coacervation phase seperation method. Upon hydration, α-mangostin loaded niosomes were characterized for size, polydispersity index (PDI), entrapment efficiency (EE) and ζ-potential. The in vitro permeation experiments with dermis-split Yucatan Micropig (YMP) skin revealed that proniosomes composed of Spans, soya lecithin and cholesterol were able to enhance the skin permeation of α-mangostin with a factor range from 1.8- to 8.0-fold as compared to the control suspension. Furthermore, incorporation of soya lecithin in the proniosomal formulation significantly enhanced the viable epidermis/dermis (VED) concentration of α-mangostin. All the proniosomal formulations (except for S20L) had significantly (p<0.05) enhanced deposition of α-mangostin in the VED layer with a factor range from 2.5- to 2.9-fold as compared to the control suspension. Since addition of Spans and soya lecithin in water improved the solubility of α-mangostin, this would be related to the enhancement of skin permeation and skin concentration of α-mangostin. The choice of non-ionic surfactant in proniosomes is an important factor governing the skin permeation and skin retention of α-mangostin. These results suggested that proniosomes can be utilized as a carrier for highly lipophilic compound like α-mangostin for topical application.
    Matched MeSH terms: Lecithins/metabolism; Lecithins/chemistry
  7. Jahadi M, Khosravi-Darani K, Ehsani MR, Mozafari MR, Saboury AA, Pourhosseini PS
    J Food Sci Technol, 2015 Apr;52(4):2063-72.
    PMID: 25829586 DOI: 10.1007/s13197-013-1243-0
    The main objective of this study was to use heating method (HM) to prepare liposome without employing any chemical solvent or detergent. Plackett-Burman design (PBD) was applied for the screening of significant process variables including the lecithin proportion, the cholesterol/lecithin ratio, the pH of solution for liposome preparation, the enzyme/lecithin ratio, the stirring time, the process temperature, the speed of stirrer, the ratio of stirrer to the tank diameter, the application of homogenization, the method of adding enzyme and centrifugation conditions on the encapsulation efficiency (EE %) of liposome and the activity of liposomal Flavourzyme (LAPU(-1)) (P 
    Matched MeSH terms: Lecithins
  8. Toopkanloo SP, Tan TB, Abas F, Alharthi FA, Nehdi IA, Tan CP
    Nanomaterials (Basel), 2020 Dec 05;10(12).
    PMID: 33291386 DOI: 10.3390/nano10122432
    This study used highly lipophilic agents with an aim to increase the oxidant inhibitory activity and enhance photothermal stability of a novel mixed soy lecithin (ML)-based liposome by changing the composition of formulation within the membrane. Specifically, the development and optimization of the liposome intended for improving Trolox equivalent antioxidant capacity (TEAC) value and %TEAC loss was carried out by incorporating a natural antioxidant, quercetin (QU). In this context, a focus was set on QU encapsulation in ML-based liposomes and the concentration-dependent solubility of QU was investigated and calculated as encapsulation efficiency (EE). To explore the combined effects of the incorporation of plant sterols on the integrity and entrapment capacity of mixed phospholipid vesicles, conjugation of two types of phytosterols (PSs), namely β-sitosterol (βS) and stigmasterol (ST), to mixed membranes at different ratios was also performed. The EE measurement revealed that QU could be efficiently encapsulated in the stable ML-based liposome using 0.15 and 0.1 g/100 mL of βS and ST, respectively. The aforementioned liposome complex exhibited a considerable TEAC (197.23%) and enhanced TEAC loss (30.81%) when exposed to ultraviolet (UV) light (280-320 nm) over a 6 h duration. It appeared that the presence and type of PSs affect the membrane-integration characteristics as well as photodamage transformation of the ML-based liposome. The association of QU with either βS or ST in the formulation was justified by their synergistic effects on the enhancement of the EE of liposomes. Parallel to this, it was demonstrated that synergistic PS effects could be in effect in the maintenance of membrane order of the ML-based liposome. The findings presented in this study provided useful information for the development and production of stable QU-loaded ML-based liposomes for food and nutraceutical applications and could serve as a potential mixed lipids-based delivery system in the disease management using antioxidant therapy.
    Matched MeSH terms: Lecithins
  9. Teo YY, Misran M, Low KH
    J Liposome Res, 2014 Sep;24(3):241-8.
    PMID: 24597523 DOI: 10.3109/08982104.2014.891234
    A vesicle is a microscopic particle composed of a lipid bilayer membrane that separates the inner aqueous compartment from the outer aqueous environment. Palmitoleate-palmitoleic acid vesicles were prepared and their physico-chemical properties were investigated. Moreover, mixed vesicles composed of palmitoleic acid and PEGylated lipid and/or a mixture of phospholipids were also prepared. The stabilizing effects of these double-chain lipids on the formation of palmitoleate-palmitoleic acid vesicles were studied. Stability of the vesicle suspension was examined using particle size and zeta potential at 30 °C. The magnitude of the zeta potential was relatively lower in the vesicle suspension with the presence of phospholipid. Although some of the mixed vesicles that were formed were not very stable, they displayed potential for encapsulating the active ingredient calcein and the encapsulation efficiencies of calcein were encouraging. The palmitoleate-palmitoleic acid-DPPE-PEG2000 vesicle showed the most promising stability and encapsulation efficiency.
    Matched MeSH terms: Lecithins/chemistry
  10. Akit H, Collins CL, Fahri FT, Hung AT, D'Souza DN, Leury BJ, et al.
    Meat Sci, 2014 Mar;96(3):1147-51.
    PMID: 24334033 DOI: 10.1016/j.meatsci.2013.10.028
    The influence of dietary lecithin at doses of 0, 4, 20 or 80 g/kg fed to finisher gilts for six weeks prior to slaughter on growth performance, carcass quality and pork quality was investigated. M. longissimus lumborum (loin) was removed from 36 pig carcasses at 24h post-mortem for Warner-Bratzler shear force, compression, collagen content and colour analyses. Dietary lecithin increased dressing percentage (P=0.009). Pork chewiness and collagen content were decreased by dietary lecithin (P<0.05, respectively), suggesting that improved chewiness may be due to decreased collagen content. However, dietary lecithin had no effect on shear force, cohesiveness or hardness (P>0.05, respectively). Dietary lecithin reduced loin muscle L* values and increased a* values (P<0.05, respectively) but no changes on b* values (P=0.56). The data showed that dietary lecithin improved dressing percentage and resulted in less chewy and less pale pork.
    Matched MeSH terms: Lecithins/administration & dosage*
  11. Gorjian H, Raftani Amiri Z, Mohammadzadeh Milani J, Ghaffari Khaligh N
    Food Chem, 2021 Apr 16;342:128342.
    PMID: 33092927 DOI: 10.1016/j.foodchem.2020.128342
    Nanoliposome and nanoniosome formulations containing myrtle extract were prepared without using cholesterol and toxic organic solvents for the first time. The formulations had different concentrations of lecithin (5, 7, and 9% w/w) and Hydrophilic-Lipophilic Balance (HLB) values (6.76, 8.40, and 9.59). The physicochemical characterization results showed a nearly spherical shape for the prepared nanosamples. The particle sizes, zeta potentials and encapsulation efficiencies for the prepared nanoliposomes and nanoniosomes were at a range of 260-293 nm and 224-520 nm; -33.16 to - 31.16 mV and - 33.3 to - 10.36 mV; and 68-73% and 79-83%, respectively. The formulated nanoniosomes showed better stability during storage time. Besides, the encapsulation efficiency and in vitro release rate of myrtle extract could be controlled by adjusting the lecithin concentration and HLB value. The release of myrtle extract from nanovesicles showed a pH-responsive character. The FTIR analysis confirmed that the myrtle extract was encapsulated in nanovesicles physically.
    Matched MeSH terms: Lecithins/chemistry
  12. Toopkanloo SP, Tan TB, Abas F, Azam M, Nehdi IA, Tan CP
    Molecules, 2020 Dec 11;25(24).
    PMID: 33322600 DOI: 10.3390/molecules25245873
    In order to improve the membrane lipophilicity and the affinity towards the environment of lipid bilayers, squalene (SQ) could be conjugated to phospholipids in the formation of liposomes. The effect of membrane composition and concentrations on the degradation of liposomes prepared via the extrusion method was investigated. Liposomes were prepared using a mixture of SQ, cholesterol (CH) and Tween80 (TW80). Based on the optimal conditions, liposome batches were prepared in the absence and presence of SQ. Their physicochemical and stability behavior were evaluated as a function of liposome constituent. From the optimization study, the liposomal formulation containing 5% (w/w) mixed soy lecithin (ML), 0.5% (w/w) SQ, 0.3% (w/w) CH and 0.75% (w/w) TW80 had optimal physicochemical properties and displayed a unilamellar structure. Liposome prepared using the optimal formulation had a low particle size (158.31 ± 2.96 nm) and acceptable %increase in the particle size (15.09% ± 3.76%) and %trolox equivalent antioxidant capacity (%TEAC) loss (35.69% ± 0.72%) against UV light treatment (280-320 nm) for 6 h. The interesting outcome of this research was the association of naturally occurring substance SQ for size reduction without the extra input of energy or mechanical procedures, and improvement of vesicle stability and antioxidant activity of ML-based liposome. This study also demonstrated that the presence of SQ in the membrane might increase the acyl chain dynamics and decrease the viscosity of the dispersion, thereby limiting long-term stability of the liposome.
    Matched MeSH terms: Lecithins/chemistry*
  13. Pandurangan DK, Bodagala P, Palanirajan VK, Govindaraj S
    Int J Pharm Investig, 2016 Jan-Mar;6(1):56-62.
    PMID: 27014620 DOI: 10.4103/2230-973X.176488
    In the present investigation, solid lipid nanoparticles (SLNs)-loaded in situ gel with voriconazole drug was formulated. Further, the formulation was characterized for pH, gelling capacity, entrapment efficiency, in vitro drug release, drug content, and viscosity. Voriconazole is an antifungal drug used to treat various infections caused by yeast or other types of fungi. Film hydration technique was used to prepared SLNs from lecithin and cholesterol. Based on the entrapment efficiency 67.2-97.3% and drug release, the optimized formulation NF1 of SLNs was incorporated into in situ gels. The in situ gels were prepared using viscosity-enhancing polymers such as Carbopol and (hydroxypropyl)methyl cellulose (HPMC). Formulated SLN in situ gel formulations were characterized, which showed pH 4.9-7.1, drug content 65.69-96.3%, and viscosity (100 rpm) 120-620 cps. From the characterizations given above, F6 was optimized and evaluated for microbial assay and ocular irritation studies. Microbial assay was conducted by the cup-plate method using Candida albicans as the test organism. An ocular irritation study was conducted on albino rabbits. The results revealed that there was no ocular damage to the cornea, conjunctiva, or iris. Stability studies were carried out on the F6 formulation for 3 months, which showed that the formulation had good stability. These results indicate that the studied SLNs-loaded in situ gel is a promising vehicle for ocular delivery.
    Matched MeSH terms: Lecithins
  14. Lee PE, Choo WS
    J Food Sci Technol, 2015 Jul;52(7):4378-86.
    PMID: 26139903 DOI: 10.1007/s13197-014-1495-3
    The emulsifying capacity of surfactants (polysorbate 20, polysorbate 80 and soy lecithin) and proteins (soy protein isolate and whey protein isolate) in flaxseed oil was measured based on 1 % (w/w) of emulsifier. Surfactants showed significantly higher emulsifying capacity compared to the proteins (soy protein isolate and whey protein isolate) in flaxseed oil. The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a mixer was ranked in the following order: 1,000 rpm (58 min) ≈ 1,000 rpm (29 min) ≈ 2,000 rpm (35 min) >2,000 rpm (17.5 min). The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a homogenizer (Ultra Turrax) was independent of the speed and mixing time. The mean particle size of the flaxseed oil emulsions prepared using the two mixing devices ranged from 23.99 ± 1.34 μm to 47.22 ± 1.99 μm where else the particle size distribution and microstructure of the flaxseed oil emulsions demonstrated using microscopic imaging were quite similar. The flaxseed oil emulsions had a similar apparent viscosity and exhibited shear thinning (pseudoplastic) behavior. The flaxseed oil emulsions had L* value above 70 and was in the red-yellow color region (positive a* and b* values).
    Matched MeSH terms: Lecithins
  15. Tarig AA, Wahid H, Rosnina Y, Yimer N, Goh YM, Baiee FH, et al.
    Vet World, 2017 Jun;10(6):672-678.
    PMID: 28717321 DOI: 10.14202/vetworld.2017.672-678
    AIM: The objective of this study was to evaluate the effects of different concentrations of soybean lecithin (SL) and virgin coconut oil (VCO) in Tris-based extender on chilled and frozen-thawed bull semen quality parameters.

    MATERIALS AND METHODS: A total of 24 ejaculates were collected from four bulls via an electroejaculator. Semen samples were diluted with 2% VCO in Tris-based extender which consists of various concentrations of SL (1, 1.25, 1.5, and 1.75%). A 20% egg yolk in Tris used as a positive control (C+). The diluted semen samples were divided into two fractions; one for chilling which were stored at 4°C for 24, 72, and 144 h before evaluated for semen quality parameters. The second fraction used for freezing was chilled for 3 h at 4°C, packed into 0.25 mL straws and then cryopreserved in liquid nitrogen. The samples were then evaluated after 7 and 14 days. Chilled and frozen semen samples were thawed at 37°C and assessed for general motility using computer-assisted semen analysis, viability, acrosome integrity and morphology (eosin-nigrosin stain), membrane integrity, and lipid peroxidation using thiobarbituric acid reaction test.

    RESULTS: The results showed that all the quality parameters assessed were significantly (p<0.05) improved at 1.5% SL concentration in chilled semen. Treatment groups of 1, 1.25, 1.5, and 1.75% SL were higher in quality parameters than the control group (C+) in chilled semen. However, all the quality parameters in frozen-thawed semen were significantly higher in the C+ than the treated groups.

    CONCLUSION: In conclusion, supplementation of 1.5% SL in 2% VCO Tris-based extender enhanced the chilled bull semen. However, there was no marked improvement in the frozen-thawed quality parameters after treatment.

    Matched MeSH terms: Lecithins
  16. Amran MHH, Zulfakar MH, Danik MF, Abdullah MSP, Shamsuddin AF
    Daru, 2019 Jun;27(1):191-201.
    PMID: 31020546 DOI: 10.1007/s40199-019-00262-7
    PURPOSE: Intravenous lipid emulsion (IVLE) was first used to prevent essential fatty acids deficiency. IVLE with α-tocopherol was reported to provide protection against parenteral nutrition-associated liver disease. This study aims to determine the optimal parameters and conditions in developing a physically stable IVLE from superolein palm oil (SoLE 20%) and its effect on lipid and liver profiles in an animal model.

    METHODS: SoLE 20% was prepared using superolein oil and MCT oil (1:1), stabilized with egg lecithin and homogenized using a high pressure homogenizer. Mean droplet size was used as the response variable and was measured using laser diffraction and dynamic light scattering method. Physical stability at 4 °C, 25 °C and 40 °C storage temperatures were determined based on particle size and distribution, polydispersity index, zeta potential, viscosity, vitamin E contents and pH. Sterility and pyrogenicity were also investigated. Rabbits were administered with 1.0 g/kg SoLE 20% for 5 h and repeated daily for 3 days to investigate its effect on blood lipid and liver enzymes profile.

    RESULTS: SoLE 20% was succesfully prepared using the optimized parameters of 800 psi, 7 cycles and 1.2 g lecithin. The IVLE prepared had a particle size of 252.60 ± 4.88 nm and was physically stable for 4 weeks at different storage temperatures. SoLE 20% had a high content of natural vitamin E, remained sterile and pyrogen free. It was also safe for intravenous administration and did not alter the blood lipid (p > 0.05) and liver enzymes profiles (p > 0.05) of the rabbits.

    CONCLUSION: The optimal parameters to develop a stable superolein based IVLE are 800 psi homogenization pressure, 7 homogenization cycles and using 1.2 g lecithin as the emulsifier. SoLE 20% is safe for intravenous administration and does not significantly alter lipid and liver enzymes profiles of the rabbits.

    Matched MeSH terms: Lecithins/chemistry
  17. Musa SH, Basri M, Masoumi HR, Karjiban RA, Malek EA, Basri H, et al.
    Colloids Surf B Biointerfaces, 2013 Dec 1;112:113-9.
    PMID: 23974000 DOI: 10.1016/j.colsurfb.2013.07.043
    Palm kernel oil esters nanoemulsion-loaded with chloramphenicol was optimized using response surface methodology (RSM), a multivariate statistical technique. Effect of independent variables (oil amount, lecithin amount and glycerol amount) toward response variables (particle size, polydispersity index, zeta potential and osmolality) were studied using central composite design (CCD). RSM analysis showed that the experimental data could be fitted into a second-order polynomial model. Chloramphenicol-loaded nanoemulsion was formulated by using high pressure homogenizer. The optimized chloramphenicol-loaded nanoemulsion response values for particle size, PDI, zeta potential and osmolality were 95.33nm, 0.238, -36.91mV, and 200mOsm/kg, respectively. The actual values of the formulated nanoemulsion were in good agreement with the predicted values obtained from RSM. The results showed that the optimized compositions have the potential to be used as a parenteral emulsion to cross blood-brain barrier (BBB) for meningitis treatment.
    Matched MeSH terms: Lecithins/chemistry
  18. Azad AK, Doolaanea AA, Al-Mahmood SMA, Kennedy JF, Chatterjee B, Bera H
    Int J Biol Macromol, 2021 Aug 31;185:861-875.
    PMID: 34237363 DOI: 10.1016/j.ijbiomac.2021.07.019
    Peppermint oil (PO) is the most prominent oil using in pharmaceutical formulations with its significant therapeutic value. In this sense, this oil is attracting considerable attention from the scientific community due to its traditional therapeutic claim, biological and pharmacological potential in recent research. An organic solvent-free and environment-friendly electrohydrodynamic assisted (EHDA) technique was employed to prepared PO-loaded alginate microbeads. The current study deals with the development, optimization, in vitro characterization, in vivo gastrointestinal tract drug distribution and ex-vivo mucoadhesive properties, antioxidant, and anti-inflammatory effects of PO-loaded alginate microbeads. The optimization results indicated the voltage and flow rate have a significant influence on microbeads size and sphericity factor and encapsulation efficiency. All these optimized microbeads showed a better drug release profile in simulated intestinal fluid (pH 6.8) at 2 h. However, a minor release was found in acidic media (pH 1.2) at 2 h. The optimized formulation showed excellent mucoadhesive properties in ex-vivo and good swelling characterization in intestine media. The microbeads were found to be well distributed in various parts of the intestine in in vivo study. PO-loaded alginate microbeads similarly showed potential antioxidant effects with drug release. The formulation exhibited possible improvement of irritable bowel syndrome (IBS) in MO-induced rats. It significantly suppressed proinflammatory cytokines, i.e., interleukin- IL-1β, and upregulated anti-inflammatory cytokine expression, i.e., IL-10. It would be a promising approach for targeted drug release after oral administration and could be considered an anti-inflammatory therapeutic strategy for treating IBS.
    Matched MeSH terms: Lecithins/chemistry*
  19. Akit H, Collins C, Fahri F, Hung A, D'Souza D, Leury B, et al.
    Animals (Basel), 2016;6(6).
    PMID: 27338483 DOI: 10.3390/ani6060038
    The purpose of this study was to investigate the effect of dietary lecithin on skeletal muscle gene expression of collagen precursors and enzymes involved in collagen synthesis and degradation. Finisher gilts with an average start weight of 55.9 ± 2.22 kg were fed diets containing either 0, 4, 20 or 80 g/kg soybean lecithin prior to harvest for six weeks and the rectus abdominis muscle gene expression profile was analyzed by quantitative real-time PCR. Lecithin treatment down-regulated Type I (α1) procollagen (COL1A1) and Type III (α1) procollagen (COL3A1) mRNA expression ( p < 0.05, respectively), indicating a decrease in the precursors for collagen synthesis. The α-subunit of prolyl 4-hydroxylase (P4H) mRNA expression also tended to be down-regulated ( p = 0.056), indicating a decrease in collagen synthesis. Decreased matrix metalloproteinase-1 (MMP-1) mRNA expression may reflect a positive regulatory response to the reduced collagen synthesis in muscle from the pigs fed lecithin ( p = 0.035). Lecithin had no effect on tissue inhibitor metalloproteinase-1 (TIMP-1), matrix metalloproteinase-13 (MMP-13) and lysyl oxidase mRNA expression. In conclusion, lecithin down-regulated COL1A1 and COL3A1 as well as tended to down-regulate α-subunit P4H expression. However, determination of muscle collagen content and solubility are required to support the gene functions.
    Matched MeSH terms: Lecithins
  20. Rajabalaya R, Leen G, Chellian J, Chakravarthi S, David SR
    Pharmaceutics, 2016;8(3).
    PMID: 27589789 DOI: 10.3390/pharmaceutics8030027
    The goal of this study was to formulate and evaluate side effects of transdermal delivery of proniosomal gel compared to oral tolterodine tartrate (TT) for the treatment of overactive bladder (OAB). Proniosomal gels are surfactants, lipids and soy lecithin, prepared by coacervation phase separation. Formulations were analyzed for drug entrapment efficiency (EE), vesicle size, surface morphology, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, in vitro skin permeation, and in vivo effects. The EE was 44.87%-91.68% and vesicle size was 253-845 nm for Span formulations and morphology showed a loose structure. The stability and skin irritancy test were also carried out for the optimized formulations. Span formulations with cholesterol-containing formulation S1 and glyceryl distearate as well as lecithin containing S3 formulation showed higher cumulative percent of permeation such as 42% and 35%, respectively. In the in vivo salivary secretion model, S1 proniosomal gel had faster recovery, less cholinergic side effect on the salivary gland compared with that of oral TT. Histologically, bladder of rats treated with the proniosomal gel formulation S1 showed morphological improvements greater than those treated with S3. This study demonstrates the potential of proniosomal vesicles for transdermal delivery of TT to treat OAB.
    Matched MeSH terms: Lecithins
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links