Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Vollala VR, Upadhya S, Nayak S
    Bratisl Lek Listy, 2011;112(12):663-9.
    PMID: 22372329
    The aim of this study was to evaluate the learning and memory-enhancing effect of Bacopa monniera in neonatal rats.
    Matched MeSH terms: Maze Learning/drug effects*
  2. Narayanan SN, Kumar RS, Paval J, Nayak S
    Bratisl Lek Listy, 2010;111(5):247-52.
    PMID: 20568412
    In the current study we evaluated adverse effects of monosodium glutamate (MSG) on memory formation and its retrieval as well as the role of ascorbic acid (Vitamin-C) in prevention of MSG-induced alteration of neurobehavioral performance in periadolescent rats.
    Matched MeSH terms: Maze Learning/drug effects
  3. Ang HH, Cheang HS
    Jpn. J. Pharmacol., 1999 Apr;79(4):497-500.
    PMID: 10361892 DOI: 10.1254/jjp.79.497
    The anxiolytic effect of Eurycoma longifolia Jack in mice was examined. Fractions of E. longifolia Jack extract produced a significant increase in the number of squares crossed (controls= 118.2 +/- 10.2 squares), but significantly decreased both the immobility (controls = 39.4+/- 4.0 sec) and fecal pellets (controls= 12.3 +/-2.1 fecal pellets) when compared with control mice in the open-field test; they significantly increased the number of entries (controls=6.7+/-0.5 entries) and time spent (controls=42.9+/-0.1 sec) in the open arms, but decreased both the number of entries (controls= 13.2+/-0.7 entries) and time spent (controls= 193.4+/-0.7 sec) when compared with the control mice in the closed arms of the elevated plus-maze test. Furthermore, fractions of E. longifolia Jack extract decreased the fighting episodes significantly (controls= 18.0+/-0.4 fighting episodes) when compared with control mice. In addition, these results were found to be consistent with anxiolytic effect produced by diazepam. Hence, this study supports the medicinal use of this plant for anxiety therapy.
    Matched MeSH terms: Maze Learning/drug effects
  4. George A, Ng CP, O'Callaghan M, Jensen GS, Wong HJ
    PMID: 24886679 DOI: 10.1186/1472-6882-14-161
    Polygonum minus Huds.is a culinary flavouring that is common in South East Asian cuisine and as a remedy for diverse maladies ranging from indigestion to poor eyesight. The leaves of this herb have been reported to be high in antioxidants. Flavonoids which have been associated with memory, cognition and protection against neurodegeneration were found in P. minus.
    Matched MeSH terms: Maze Learning/drug effects
  5. Farah Naquiah MZ, James RJ, Suratman S, Lee LS, Mohd Hafidz MI, Salleh MZ, et al.
    Behav Brain Funct, 2016 Aug 31;12(1):23.
    PMID: 27582026 DOI: 10.1186/s12993-016-0107-y
    Heroin addiction is a growing concern, affecting the socioeconomic development of many countries. Little is known about transgenerational effects on phenotype changes due to heroin addiction. This study aims to investigate changes in level of anxiety and aggression up to four different generations of adult male rats due to paternal exposure to heroin.
    Matched MeSH terms: Maze Learning/drug effects
  6. Hassan Z, Suhaimi FW, Ramanathan S, Ling KH, Effendy MA, Müller CP, et al.
    J. Psychopharmacol. (Oxford), 2019 07;33(7):908-918.
    PMID: 31081443 DOI: 10.1177/0269881119844186
    BACKGROUND: Mitragynine is the major alkaloid of Mitragyna speciosa (Korth.) or Kratom, a psychoactive plant widely abused in Southeast Asia. While addictive effects of the substance are emerging, adverse cognitive effects of this drug and neuropharmacological actions are insufficiently understood.

    AIMS: In the present study, we investigated the effects of mitragynine on spatial learning and synaptic transmission in the CA1 region of the hippocampus.

    METHODS: Male Sprague Dawley rats received daily (for 12 days) training sessions in the Morris water maze, with each session followed by treatment either with mitragynine (1, 5, or 10 mg/kg; intraperitoneally), morphine (5 mg/kg; intraperitoneally) or a vehicle. In the second experiment, we recorded field excitatory postsynaptic potentials in the hippocampal CA1 area in anesthetized rats and assessed the effects of mitragynine on baseline synaptic transmission, paired-pulse facilitation, and long-term potentiation. Gene expression of major memory- and addiction-related genes was investigated and the effects of mitragynine on Ca2+ influx was also examined in cultured primary neurons from E16-E18 rats.

    RESULTS/OUTCOMES: Escape latency results indicate that animals treated with mitragynine displayed a slower rate of acquisition as compared to their control counterparts. Further, mitragynine treatment significantly reduced the amplitude of baseline (i.e. non-potentiated) field excitatory postsynaptic potentials and resulted in a minor suppression of long-term potentiation in CA1. Bdnf and αCaMKII mRNA expressions in the brain were not affected and Ca2+ influx elicited by glutamate application was inhibited in neurons pre-treated with mitragynine.

    CONCLUSIONS/INTERPRETATION: These data suggest that high doses of mitragynine (5 and 10 mg/kg) cause memory deficits, possibly via inhibition of Ca2+ influx and disruption of hippocampal synaptic transmission and long-term potentiation induction.

    Matched MeSH terms: Maze Learning/drug effects*
  7. Suliman NA, Taib CNM, Moklas MAM, Basir R
    Neurotox Res, 2018 02;33(2):402-411.
    PMID: 28933048 DOI: 10.1007/s12640-017-9806-x
    Neurogenesis is influenced by various external factors such as enriched environments. Some researchers had postulated that neurogenesis has contributed to the hippocampal learning and memory. This project was designed to observe the effect of Delta-9-tetrahydrocannabinol (∆9-THC) in cognitive performance that influenced by the neurogenesis. Different doses of ∆9-THC were used for observing the neurogenesis mechanism occurs in the hippocampus of rats. The brains were stained with antibodies, namely BrdU, glial fibrillary acidic protein (GFAP), nestin, doublecortin (DCX) and class III β-tubulin (TuJ-1). The cognitive test was used novel-object discrimination test (NOD) while the proteins involved, DCX and brain-derived neurotrophic factor (BDNF), were measured. Throughout this study, ∆9-THC enhanced the markers involved in all stages of neurogenesis mechanism. Simultaneously, the cognitive behaviour of rat also showed improvement in learning and memory functions observed in behavioural test and molecular perspective. Administration of ∆9-THC was observed to enhance the neurogenesis in the brain, especially in hippocampus thus improved the cognitive function of rats.
    Matched MeSH terms: Maze Learning/drug effects
  8. Hafandi A, Begg DP, Premaratna SD, Sinclair AJ, Jois M, Weisinger RS
    Comp. Med., 2014 Apr;64(2):106-9.
    PMID: 24674584
    Dietary deficiency of ω3 fatty acid during development leads to impaired cognitive function. However, the effects of multiple generations of ω3 fatty-acid deficiency on cognitive impairment remain unclear. In addition, we sought to test the hypothesis that the cognitive impairments of ω3 fatty-acid-deficient mice are mediated through the arachidonic acid-cyclooxygenase (COX) pathway. To address these issues, C57BL/6J mice were bred for 3 generations and fed diets either deficient (DEF) or sufficient (SUF) in ω3 fatty acids. At postnatal day 21, the F3 offspring remained on the dam's diet or were switched to the opposite diet, creating 4 groups. In addition, 2 groups that remained on the dam's diet were treated with a COX inhibitor. At 19 wk of age, spatial-recognition memory was tested on a Y-maze. Results showed that 16 wk of SUF diet reversed the cognitive impairment of F3 DEF mice. However, 16 wk of ω3 fatty-acid-deficient diet impaired the cognitive performance of the F3 SUF mice, which did not differ from that of the F3 DEF mice. These findings suggest that the cognitive deficits after multigenerational maintenance on ω3 fatty-acid-deficient diet are not any greater than are those after deficiency during a single generation. In addition, treatment with a COX inhibitor prevented spatial-recognition deficits in F3 DEF mice. Therefore, cognitive impairment due to dietary ω3 fatty-acid deficiency appears to be mediated by the arachidonic acid-COX pathway and can be prevented by 16 wk of dietary repletion with ω3 fatty acids or COX inhibition.
    Matched MeSH terms: Maze Learning/drug effects
  9. Hajjar T, Meng GY, Rajion MA, Vidyadaran S, Othman F, Farjam AS, et al.
    BMC Neurosci, 2012;13:109.
    PMID: 22989138 DOI: 10.1186/1471-2202-13-109
    This study examined the effects of dietary polyunsaturated fatty acids (PUFA) as different n-6: n-3 ratios on spatial learning and gene expression of peroxisome- proliferator-activated receptors (PPARs) in the hippocampus of rats. Thirty male Sprague-Dawley rats were randomly allotted into 3 groups of ten animals each and received experimental diets with different n-6: n-3 PUFA ratios of either 65:1, 22:1 or 4.5:1. After 10 weeks, the spatial memory of the animals was assessed using the Morris Water Maze test. The expression of PPARα and PPARγ genes were determined using real-time PCR.
    Matched MeSH terms: Maze Learning/drug effects*
  10. Leow SS, Sekaran SD, Tan Y, Sundram K, Sambanthamurthi R
    Nutr Neurosci, 2013 Sep;16(5):207-17.
    PMID: 23433062 DOI: 10.1179/1476830512Y.0000000047
    Phenolics are important phytochemicals which have positive effects on chronic diseases, including neurodegenerative ailments. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics. This study was carried out to discover the effects of administering oil palm phenolics (OPP) to mice, with the aim of identifying whether these compounds possess significant neuroprotective properties.
    Matched MeSH terms: Maze Learning/drug effects
  11. Sopian NF, Ajat M, Shafie NI, Noor MH, Ebrahimi M, Rajion MA, et al.
    Int J Mol Sci, 2015;16(7):15800-10.
    PMID: 26184176 DOI: 10.3390/ijms160715800
    Dietary omega-3 fatty acids have been recognized to improve brain cognitive function. Deficiency leads to dysfunctional zinc metabolism associated with learning and memory impairment. The objective of this study is to explore the effect of short-term dietary omega-3 fatty acids on hippocampus gene expression at the molecular level in relation to spatial recognition memory in mice. A total of 24 male BALB/c mice were randomly divided into four groups and fed a standard pellet as a control group (CTL, n = 6), standard pellet added with 10% (w/w) fish oil (FO, n = 6), 10% (w/w) soybean oil (SO, n = 6) and 10% (w/w) butter (BT, n = 6). After 3 weeks on the treatment diets, spatial-recognition memory was tested on a Y-maze. The hippocampus gene expression was determined using a real-time PCR. The results showed that 3 weeks of dietary omega-3 fatty acid supplementation improved cognitive performance along with the up-regulation of α-synuclein, calmodulin and transthyretin genes expression. In addition, dietary omega-3 fatty acid deficiency increased the level of ZnT3 gene and subsequently reduced cognitive performance in mice. These results indicate that the increased the ZnT3 levels caused by the deficiency of omega-3 fatty acids produced an abnormal zinc metabolism that in turn impaired the brain cognitive performance in mice.
    Matched MeSH terms: Maze Learning/drug effects
  12. Abd Rashid N, Hapidin H, Abdullah H, Ismail Z, Long I
    Brain Behav, 2017 06;7(6):e00704.
    PMID: 28638710 DOI: 10.1002/brb3.704
    INTRODUCTION: REM sleep deprivation is associated with impairment in learning and memory, and nicotine treatment has been shown to attenuate this effect. Recent studies have demonstrated the importance of DREAM protein in learning and memory processes. This study investigates the association of DREAM protein in REM sleep-deprived rats hippocampus upon nicotine treatment.

    METHODS: Male Sprague Dawley rats were subjected to normal condition, REM sleep deprivation and control wide platform condition for 72 hr. During this procedure, saline or nicotine (1 mg/kg) was given subcutaneously twice a day. Then, Morris water maze (MWM) test was used to assess learning and memory performance of the rats. The rats were sacrificed and the brain was harvested for immunohistochemistry and Western blot analysis.

    RESULTS: MWM test found that REM sleep deprivation significantly impaired learning and memory performance without defect in locomotor function associated with a significant increase in hippocampus DREAM protein expression in CA1, CA2, CA3, and DG regions and the mean relative level of DREAM protein compared to other experimental groups. Treatment with acute nicotine significantly prevented these effects and decreased expression of DREAM protein in all the hippocampus regions but only slightly reduce the mean relative level of DREAM protein.

    CONCLUSION: This study suggests that changes in DREAM protein expression in CA1, CA2, CA3, and DG regions of rat's hippocampus and mean relative level of DREAM protein may involve in the mechanism of nicotine treatment-prevented REM sleep deprivation-induced learning and memory impairment in rats.

    Matched MeSH terms: Maze Learning/drug effects
  13. Chiroma SM, Hidayat Baharuldin MT, Mat Taib CN, Amom Z, Jagadeesan S, Adenan MI, et al.
    Biomed Pharmacother, 2019 Jan;109:853-864.
    PMID: 30551539 DOI: 10.1016/j.biopha.2018.10.111
    BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder and the commonest cause of dementia among the aged people. D-galactose (D-gal) is a senescence agent, while aluminium is a known neurotoxin linked to pathogenesis of AD. The combined administration of rats with d-gal and aluminium chloride (AlCl3) is considered to be an easy and a cheap method to obtain an animal model of AD. The plant Centella asiatica (CA) is reported to exert neuroprotective effects both in vitro and in vivo. Therefore, this study explored the protective effects of CA on cognition and brain ultrastructure in d-gal and AlCl3 induced rats.

    MATERIALS AND METHODS: Rats were exposed to d-gal 60 mg/kg/b.wt/day + AlCl3 200 mg/kg/b.wt/day and CA (200, 400 and 800 mg/kg/b.wt/day) and 1 mg/kg/b.wt/day of donepezil for 70 days. Different cognitive paradigms viz. T maze spontaneous alternation, modified elevated plus maze and novel object recognition test, were used to evaluate full lesions of the hippocampus, spatial learning and memory and non-spatial learning and memory respectively. Nissl's staining was used to determine the survival of hippocampus CA1 pyramidal cells, while transmission electron microscopy was used to check the ultrastructural changes.

    RESULTS: The results revealed that d-gal and AlCl3 could significantly impair behavior and cognitive functions, besides causing damage to the hippocampal CA1 pyramidal neurons in rats. In addition, it also caused ultrastructural morphological alterations in rat hippocampus. Conversely, co-administration o;f CA, irrespective of the dosage used, alleviated the cognitive impairments and pathological changes in the rats comparable to donepezil.

    CONCLUSION: In conclusion the results suggest that CA could protect cognitive impairments and morphological alterations caused by d-gal and AlCl3 toxicity in rats. Biochemical and molecular studies are ongoing to elucidate the probable pharmacodynamics of CA.

    Matched MeSH terms: Maze Learning/drug effects
  14. Chidambaram SB, Pandian A, Sekar S, Haridass S, Vijayan R, Thiyagarajan LK, et al.
    Environ Toxicol, 2016 Dec;31(12):1955-1963.
    PMID: 26434561 DOI: 10.1002/tox.22196
    PURPOSE: Present study was undertaken to evaluate the antiamnesic effect of Sesamum indicum (S. indicum) seeds (standardized for sesamin, a lignan, content) in scopolamine, a muscarinic antagonist intoxicated mice.

    METHODS: Male Swiss albino mice (18-22 g bw) were pretreated with methanolic extract of sesame seeds (MSSE) (100 and 200 mg/kg/day, p.o) for a period of 14 days. Scopolamine (0.3 mg/kg, i.p.) was injected on day 14, 45 ± 10 min after MSSE administration. Antiamnesic effect of MSSE was evaluated using step-down latency (SDL) on passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. To unravel the mechanism of action, we examined the effects of MSSE on the genes such as acetyl cholinesterase (AChE), muscarinic receptor M1 subtype (mAChRM1 ), and brain derived neurotrophic factor (BDNF) expression within hippocampus of experimental mice. Further, its effects on bax and bcl-2 were also evaluated. Histopathological examination of hippocampal CA1 region was performed using cresyl violet staining.

    RESULTS: MSSE treatment produced a significant and dose dependent increase in step down latency in passive avoidance test and decrease in transfer latency in elevated plus maze in scopolamine intoxicated injected mice. MSSE down-regulated AChE and mAChRM1 and up-regulated BDNF mRNA expression. Further, it significantly down-regulated the bax and caspase 3 and up-regulated bcl-2 expression in scopolamine intoxicated mice brains. Mice treated with MSSE showed increased neuronal counts in hippocampal CA1 region when compared with scopolamine-vehicle treated mice.

    CONCLUSION: Sesame seeds have the ability to interact with cholinergic components involved in memory function/restoration and also an interesting candidate to be considered for future cognitive research. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1955-1963, 2016.

    Matched MeSH terms: Maze Learning/drug effects
  15. Damodaran T, Tan BWL, Liao P, Ramanathan S, Lim GK, Hassan Z
    J Ethnopharmacol, 2018 Oct 05;224:381-390.
    PMID: 29920356 DOI: 10.1016/j.jep.2018.06.020
    ETHNOPHARMACOLOGICAL RELEVANCE: Clitoria ternatea L. (CT), commonly known as Butterfly pea, is used in Indian Ayurvedic medicine to promote brain function and treat mental disorders. Root of CT has been proven to enhance memory, but its role in an animal model of chronic cerebral hypoperfusion (CCH), which has been considered as a major cause of brain disorders, has yet to be explored.

    AIM OF THE STUDY: To assess the motor and cognitive effects of acute oral administration of CT root methanolic extract and hippocampal long-term plasticity in the CA1 region of the CCH rat model.

    MATERIALS AND METHODS: Male Sprague Dawley rats (200-300 g) were subjected to permanent bilateral occlusion of common carotid arteries (PBOCCA) or sham operation. Then, these rats were given oral administration of CT root extract at doses of 100, 200 or 300 mg/kg on day 28 post-surgery and tested using behavioural tests (open-field test, passive avoidance task, and Morris water maze) and electrophysiological recordings (under urethane anaesthesia).

    RESULTS: Treatment with CT root extract at the doses of 200 and 300 mg/kg resulted in a significant enhancement in memory performance in CCH rats induced by PBOCCA. Furthermore, CCH resulted in inhibition of long-term potentiation (LTP) formation in the hippocampus, and CT root extract rescued the LTP impairment. The CT root extract was confirmed to improve the glutamate-induced calcium increase via calcium imaging using primary cultured rat neurons. No significance difference was found in the CaMKII expression. These results demonstrated that CT root extract ameliorates synaptic function, which may contribute to its improving effect on cognitive behaviour.

    CONCLUSIONS: Our findings demonstrated an improving effect of CT root extract on memory in the CCH rat model suggesting that CT root extract could be a potential therapeutic strategy to prevent the progression of cognitive deterioration in vascular dementia (VaD) and Alzheimer's disease (AD) patients.

    Matched MeSH terms: Maze Learning/drug effects
  16. Damodaran T, Müller CP, Hassan Z
    Pharmacol Rep, 2019 Jun;71(3):443-448.
    PMID: 31003155 DOI: 10.1016/j.pharep.2019.01.012
    BACKGROUND: Chronic cerebral hypoperfusion (CCH) can induce the accumulation of reactive oxygen species, which leads to oxidative damage, neuronal injury, and central cholinergic dysfunction in vulnerable regions of the brain, such as the hippocampus and cerebral cortex. These effects can lead to significant cognitive impairments in clinical populations of vascular dementia (VaD). The present studies aimed to investigate the role of the cholinergic system in memory functions and hippocampal long-term potentiation (LTP) impairments induced by CCH in rats.

    METHODS: Male Sprague Dawley rats were subjected to permanent bilateral occlusion of common carotid arteries (PBOCCA) or sham surgery. Then, PBOCCA rats received ip injections with, either vehicle (control group), the muscarinic receptor agonist oxotremorine (0.1 mg/kg), or the acetylcholinesterase inhibitor physostigmine (0.1 mg/kg). Cognitive functions were evaluated using a passive avoidance task and the Morris water maze test. In addition, hippocampal LTP was recorded in vivo under anaesthesia.

    RESULTS: The PBOCCA rats exhibited significant deficits in passive avoidance retention and spatial learning and memory tests. They also showed a suppression of LTP formation in the hippocampus. Oxotremorine and physostigmine significantly improved the learning and memory deficits as well as the suppression of LTP in PBOCCA rats.

    CONCLUSIONS: The present data suggest that the cholinergic system plays an important role in CCH-induced cognitive deficits and could be an effective therapeutic target for the treatment of VaD.

    Matched MeSH terms: Maze Learning/drug effects
  17. Gurjar AS, Darekar MN, Yeong KY, Ooi L
    Bioorg Med Chem, 2018 05 01;26(8):1511-1522.
    PMID: 29429576 DOI: 10.1016/j.bmc.2018.01.029
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder with multiple factors associated with its pathogenesis. Our strategy against AD involves design of multi-targeted 2-substituted-4,5-diphenyl-1H-imidazole analogues which can interact and inhibit AChE, thereby, increasing the synaptic availability of ACh, inhibit BuChE, relieve induced oxidative stress and confer a neuroprotective role. Molecular docking was employed to study interactions within the AChE active site. In silico ADME study was performed to estimate pharmacokinetic parameters. Based on computational studies, some analogues were synthesized and subjected to pharmacological evaluation involving antioxidant activity, toxicity and memory model studies in animals followed by detailed mechanistic in vitro cholinesterase inhibition study. Amongst the series, analogue 13 and 20 are the most promising multi-targeted candidates which can potentially increase memory, decrease free radical levels and protect neurons against cognitive deficit.
    Matched MeSH terms: Maze Learning/drug effects
  18. Azzubaidi MS, Saxena AK, Talib NA, Ahmed QU, Dogarai BB
    Acta Neurobiol Exp (Wars), 2012;72(2):154-65.
    PMID: 22810217
    The fixed oil of black cumin seeds, Nigella sativa L. (NSO), has shown considerable antioxidant and anti-inflammatory activities. Chronic cerebral hypoperfusion has been linked to neurodegenerative disorders including Alzheimer's disease (AD) and its subsequent cognitive impairment in which oxidative stress and neuroinflammation are the principal culprits. Cerebrovascular hypoperfusion was experimentally achieved by bilateral common carotid arteries occlusion (2VO) in rats. Morris water maze (MWM) test was employed to assess the effects of NSO on spatial cognitive function before and after 2VO intervention. Rats were divided into long-term memory (LTM) and short-term memory (STM) groups, each was further subdivided into 3 subgroups: sham control, untreated 2VO and NSO treated 2VO group. All subgroups were tested with MWM at the tenth postoperative week. Working memory test results for both sham control and NSO treated groups showed significantly lower escape latency time and total distance travelled than untreated 2VO group. Similarly, LTM and STM MWM tests for sham control and NSO treated groups revealed significantly better maze test performance as compared to untreated 2VO group. Sham control and NSO treated 2VO groups demonstrated superior probe memory test performance as compared to untreated 2VO group. The fixed oil of Nigella sativa seeds has demonstrated noticeable spatial cognitive preservation in rats challenged with chronic cerebral hypoperfusion which indicates a promising prospective neuroprotective effect.
    Matched MeSH terms: Maze Learning/drug effects
  19. Mani V, Parle M, Ramasamy K, Abdul Majeed AB
    J Sci Food Agric, 2011 Jan 15;91(1):186-92.
    PMID: 20848667 DOI: 10.1002/jsfa.4171
    Coriandrum sativum L., commonly known as coriander and belonging to the family Apiaceae (Umbelliferae), is cultivated throughout the world for its nutritional value. The present study was undertaken to investigate the effects of fresh Coriandrum sativum leaves (CSL) on cognitive functions, total serum cholesterol levels and brain cholinesterase activity in mice. In this study, CSL (5, 10 and 15% w/w of diet) was fed orally with a specially prepared diet for 45 days consecutively to experimental animals. Elevated plus-maze and passive avoidance apparatus served as the exteroceptive behavioral models for testing memory. Diazepam, scopolamine and ageing-induced amnesia served as the interoceptive behavioral models.
    Matched MeSH terms: Maze Learning/drug effects
  20. Bakhtiyari E, Ahmadian-Attari MM, Salehi P, Khallaghi B, Dargahi L, Mohamed Z, et al.
    Nutr Neurosci, 2017 Oct;20(8):469-477.
    PMID: 27219682 DOI: 10.1080/1028415X.2016.1183986
    OBJECTIVES: Although grape has been recently the topic of many investigations, Maviz (a kind of dried one) has remained neglected. The aim of this study was to assess anti-Alzheimer activity of Maviz.

    METHODS: To reach this goal, total phenolic content (TPC) of ethanolic (Eth) and aqueous (Aq) extracts were determined and radical scavenging activity was assayed by 2,2-diphenyl-1-picrylhydrazyl. Chemical compositions of each extract were also determined via GC-Mass. Behavioral changes were studied via passive avoidance and Morris water maze in Aβ-induced model of Alzheimer's disease. Catalase (CAT) and superoxide dismutase (SOD) determination were also done on rats' hippocampus.

    RESULTS: The results showed that seed Eth extract has a high level of TPC and radical scavenging activity. However, this extract had surprisingly no effect on memory and CAT and SOD activities. In contrast, fruit Aq and Eth extracts (containing furfurals as major compounds) inhibited memory impairment (P 

    Matched MeSH terms: Maze Learning/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links