Displaying publications 1 - 20 of 34 in total

  1. Ahmad MB, Fatehi A, Zakaria A, Mahmud S, Mohammadi SA
    Int J Mol Sci, 2012;13(12):15640-52.
    PMID: 23443085 DOI: 10.3390/ijms131215640
    This study focuses on the fabrication and electrical characterization of a polymer composite based on nano-sized varistor powder. The polymer composite was fabricated by the melt-blending method. The developed nano-composite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FeSEM), and energy-dispersive X-ray spectroscopy (EDAX). The XRD pattern revealed the crystallinity of the composite. The XRD study also showed the presence of secondary phases due to the substitution of zinc by other cations, such as bismuth and manganese. The TEM picture of the sample revealed the distribution of the spherical, nano-sized, filler particles throughout the matrix, which were in the 10-50 nm range with an average of approximately 11 nm. The presence of a bismuth-rich phase and a ZnO matrix phase in the ZnO-based varistor powder was confirmed by FeSEM images and EDX spectra. From the current-voltage curves, the non-linear coefficient of the varistor polymer composite with 70 wt% of nano filler was 3.57, and its electrical resistivity after the onset point was 861 KΩ. The non-linear coefficient was 1.11 in the sample with 100 wt% polymer content. Thus, it was concluded that the composites established a better electrical non-linearity at higher filler amounts due to the nano-metric structure and closer particle linkages.
    Matched MeSH terms: Metals/chemistry*
  2. Hamidi MFFA, Harun WSW, Samykano M, Ghani SAC, Ghazalli Z, Ahmad F, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 Sep 01;78:1263-1276.
    PMID: 28575965 DOI: 10.1016/j.msec.2017.05.016
    Biocompatible metals have been revolutionizing the biomedical field, predominantly in human implant applications, where these metals widely used as a substitute to or as function restoration of degenerated tissues or organs. Powder metallurgy techniques, in specific the metal injection moulding (MIM) process, have been employed for the fabrication of controlled porous structures used for dental and orthopaedic surgical implants. The porous metal implant allows bony tissue ingrowth on the implant surface, thereby enhancing fixation and recovery. This paper elaborates a systematic classification of various biocompatible metals from the aspect of MIM process as used in medical industries. In this study, three biocompatible metals are reviewed-stainless steels, cobalt alloys, and titanium alloys. The applications of MIM technology in biomedicine focusing primarily on the MIM process setting parameters discussed thoroughly. This paper should be of value to investigators who are interested in state of the art of metal powder metallurgy, particularly the MIM technology for biocompatible metal implant design and development.
    Matched MeSH terms: Metals/chemistry*
  3. Ajab H, Yaqub A, Malik SA, Junaid M, Yasmeen S, Abdullah MA
    ScientificWorldJournal, 2014;2014:413614.
    PMID: 24672317 DOI: 10.1155/2014/413614
    In this study, concentrations of Cd, Ni, Pb, and Cr were determined in tobacco, tobacco smoke-condensate, and cigarette ash for selected brands used in Pakistan. Smoking apparatus was designed for metal extraction from cigarette smoke. Samples were digested through microwave digester and then analyzed by flame atomic absorption spectrophotometer (FAAS). Higher concentration of Ni was detected in imported brands than the counterparts in the local brands. Pb levels were however higher in local brands while significant concentration of Cd was observed in both brands. For Cr, the level in tobacco of local brands was higher than their emitted smoke, whereas imported brands showed higher level in smoke than in tobacco. The cigarette ash retained 65 to 75% of the metal and about 25 to 30% went into the body. While this study revealed the serious requirement to standardize the manufacturing of tobacco products, more importantly is the urgent need for stronger enforcements to put in place to alert the general population about the hazardous effects of cigarettes and the health risks associated with these toxic metals.
    Matched MeSH terms: Metals/chemistry
  4. Ahmad A, Siddique JA, Laskar MA, Kumar R, Mohd-Setapar SH, Khatoon A, et al.
    J Environ Sci (China), 2015 May 1;31:104-23.
    PMID: 25968265 DOI: 10.1016/j.jes.2014.12.008
    The direct determination of toxic metal ions, in environmental samples, is difficult because of the latter's presence in trace concentration in association with complex matrices, thereby leading to insufficient sensitivity and selectivity of the methods used. The simultaneous removal of the matrix and preconcentration of the metal ions, through solid phase extraction, serves as the promising solution. The mechanism involved in solid phase extraction (SPE) depends on the nature of the sorbent and analyte. Thus, SPE is carried out by means of adsorption, ion exchange, chelation, ion pair formation, and so forth. As polymeric supports, the commercially available Amberlite resins have been found very promising for designing chelating matrices due to its good physical and chemical properties such as porosity, high surface area, durability and purity. This review presents an overview of the various works done on the modification of Amberlite XAD resins with the objective of making it an efficient sorbent. The methods of modifications which are generally based on simple impregnation, sorption as chelates and chemical bonding have been discussed. The reported results, including the preconcentration limit, the detection limit, sorption capacity, preconcentration factors etc., have been reproduced.
    Matched MeSH terms: Metals/chemistry*
  5. He Z, Tan JS, Lai OM, Ariff AB
    Food Chem, 2015 Aug 15;181:19-24.
    PMID: 25794715 DOI: 10.1016/j.foodchem.2014.11.166
    In this study, the methods for extraction and purification of miraculin from Synsepalum dulcificum were investigated. For extraction, the effect of different extraction buffers (phosphate buffer saline, Tris-HCl and NaCl) on the extraction efficiency of total protein was evaluated. Immobilized metal ion affinity chromatography (IMAC) with nickel-NTA was used for the purification of the extracted protein, where the influence of binding buffer pH, crude extract pH and imidazole concentration in elution buffer upon the purification performance was explored. The total amount of protein extracted from miracle fruit was found to be 4 times higher using 0.5M NaCl as compared to Tris-HCl and phosphate buffer saline. On the other hand, the use of Tris-HCl as binding buffer gave higher purification performance than sodium phosphate and citrate-phosphate buffers in IMAC system. The optimum purification condition of miraculin using IMAC was achieved with crude extract at pH 7, Tris-HCl binding buffer at pH 7 and the use of 300 mM imidazole as elution buffer, which gave the overall yield of 80.3% and purity of 97.5%. IMAC with nickel-NTA was successfully used as a single step process for the purification of miraculin from crude extract of S. dulcificum.
    Matched MeSH terms: Metals/chemistry*
  6. Dikhanbaev B, Gomes C, Dikhanbaev AB
    PLoS ONE, 2017;12(12):e0187790.
    PMID: 29281646 DOI: 10.1371/journal.pone.0187790
    Dumps of a mining-metallurgical complex of post-Soviet Republics have accumulated a huge amount of technogenic waste products. Out of them, Kazakhstan alone has preserved about 20 billion tons. In the field of technogenic waste treatment, there is still no technical solution that leads it to be a profitable process. Recent global trends prompted scientists to focus on developing energy-saving and a highly efficient melting unit that can significantly reduce specific fuel consumption. This paper reports, the development of a new technological method-smelt layer of inversion phase. The introducing method is characterized by a combination of ideal stirring and ideal displacement regimes. Using the method of affine modelling, recalculation of pilot plant's test results on industrial sample has been obtained. Experiments show that in comparison with bubbling and boiling layers of smelt, the degree of zinc recovery increases in the layer of inversion phase. That indicates the reduction of the possibility of new formation of zinc silicates and ferrites from recombined molecules of ZnO, SiO2, and Fe2O3. Calculations show that in industrial samples of the pilot plant, the consumption of natural gas has reduced approximately by two times in comparison with fuming-furnace. The specific fuel consumption has reduced by approximately four times in comparison with Waelz-kiln.
    Matched MeSH terms: Metals/chemistry
  7. Muhd Julkapli N, Bagheri S, Bee Abd Hamid S
    ScientificWorldJournal, 2014;2014:692307.
    PMID: 25054183 DOI: 10.1155/2014/692307
    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes.
    Matched MeSH terms: Metals/chemistry
  8. Latif MT, Ngah SA, Dominick D, Razak IS, Guo X, Srithawirat T, et al.
    J Environ Sci (China), 2015 Jul 1;33:143-55.
    PMID: 26141887 DOI: 10.1016/j.jes.2015.02.002
    The aim of this study was to determine the source apportionment of dust fall around Lake Chini, Malaysia. Samples were collected monthly between December 2012 and March 2013 at seven sampling stations located around Lake Chini. The samples were filtered to separate the dissolved and undissolved solids. The ionic compositions (NO3-, SO4(2-), Cl- and NH4+) were determined using ion chromatography (IC) while major elements (K, Na, Ca and Mg) and trace metals (Zn, Fe, Al, Ni, Mn, Cr, Pb and Cd) were determined using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the average concentration of total solids around Lake Chini was 93.49±16.16 mg/(m2·day). SO4(2-), Na and Zn dominated the dissolved portion of the dust fall. The enrichment factors (EF) revealed that the source of the trace metals and major elements in the rain water was anthropogenic, except for Fe. Hierarchical agglomerative cluster analysis (HACA) classified the seven monitoring stations and 16 variables into five groups and three groups respectively. A coupled receptor model, principal component analysis multiple linear regression (PCA-MLR), revealed that the sources of dust fall in Lake Chini were dominated by agricultural and biomass burning (42%), followed by the earth's crust (28%), sea spray (16%) and a mixture of soil dust and vehicle emissions (14%).
    Matched MeSH terms: Metals/chemistry
  9. Cheong HR, Nguyen NT, Khaw MK, Teoh BY, Chee PS
    Lab Chip, 2018 10 09;18(20):3207-3215.
    PMID: 30229248 DOI: 10.1039/c8lc00776d
    This paper reports a wirelessly powered ionic polymer-metal composite (IPMC) soft actuator operated by external radio frequency (RF) magnetic fields for targeted drug delivery. A 183 μm thick IPMC cantilever valve was fitted with an embedded LC resonant circuit to wirelessly control the actuator when the field frequency is tuned to its resonant frequency of approximately 25 MHz. Experimental characterization of the fabricated actuator showed a cumulative cantilever deflection of 160 μm for three repeated RF ON-OFF cycles at 0.6 W input power. The device was loaded with a dye solution and immersed in DI water to demonstrate wireless drug release. The qualitative result shows the successful release of the dye solution from the device reservoir. The release rate can be controlled by tuning the RF input power. We achieved a maximum average release rate of ∼0.1 μl s-1. We further conducted an in vitro study with human tumor cells (HeLa) to demonstrate the proof of concept of the developed device. The experiments show promising results towards the intended drug delivery application.
    Matched MeSH terms: Metals/chemistry*
  10. Basri SN, Zainuddin N, Hashim K, Yusof NA
    Carbohydr Polym, 2016 Mar 15;138:34-40.
    PMID: 26794735 DOI: 10.1016/j.carbpol.2015.11.028
    Carboxymethyl sago starch-acid hydrogel was prepared via irradiation technique to remove divalent metal ions (Pb, Cu and Cd) from their aqueous solution. The hydrogel was characterized by using Fourier Transform Infrared (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The removal of these metal ions was analyzed by using inductively coupled plasma-optic emission spectra (ICP-OES) to study the amount of metal uptake by the hydrogel. Parameters of study include effect of pH, amount of sample, contact time, initial concentration of metal solution and reaction temperature. FTIR spectroscopy shows the CMSS hydrogel absorption peaks at 1741cm(-1), 1605cm(-1) and 1430cm(-1) which indicates the substitution of carboxymethyl group of modified sago starch. The degradation temperature of CMSS hydrogel is higher compared to CMSS due to the crosslinking by electron beam radiation and formed a porous hydrogel. From the data obtained, about 93.5%, 88.4% and 85.5% of Pb, Cu and Cd ions has been respectively removed from their solution under optimum condition.
    Matched MeSH terms: Metals/chemistry*
  11. Dennis JO, Ahmad F, Khir MH, Bin Hamid NH
    Sensors (Basel), 2015;15(8):18256-69.
    PMID: 26225972 DOI: 10.3390/s150818256
    Magnetic field sensors are becoming an essential part of everyday life due to the improvements in their sensitivities and resolutions, while at the same time they have become compact, smaller in size and economical. In the work presented herein a Lorentz force based CMOS-MEMS magnetic field sensor is designed, fabricated and optically characterized. The sensor is fabricated by using CMOS thin layers and dry post micromachining is used to release the device structure and finally the sensor chip is packaged in DIP. The sensor consists of a shuttle which is designed to resonate in the lateral direction (first mode of resonance). In the presence of an external magnetic field, the Lorentz force actuates the shuttle in the lateral direction and the amplitude of resonance is measured using an optical method. The differential change in the amplitude of the resonating shuttle shows the strength of the external magnetic field. The resonance frequency of the shuttle is determined to be 8164 Hz experimentally and from the resonance curve, the quality factor and damping ratio are obtained. In an open environment, the quality factor and damping ratio are found to be 51.34 and 0.00973 respectively. The sensitivity of the sensor is determined in static mode to be 0.034 µm/mT when a current of 10 mA passes through the shuttle, while it is found to be higher at resonance with a value of 1.35 µm/mT at 8 mA current. Finally, the resolution of the sensor is found to be 370.37 µT.
    Matched MeSH terms: Metals/chemistry*
  12. Yung LC, Fei CC, Mandeep J, Binti Abdullah H, Wee LK
    PLoS ONE, 2014;9(5):e97484.
    PMID: 24830317 DOI: 10.1371/journal.pone.0097484
    The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail.
    Matched MeSH terms: Metals/chemistry
  13. Naganathan S, Razak HA, Hamid SN
    J. Environ. Manage., 2013 Oct 15;128:637-41.
    PMID: 23845957 DOI: 10.1016/j.jenvman.2013.06.009
    This paper reports the corrosivity and leaching behavior of CLSM made using two different industrial wastes i.e. bottom ash from an incineration facility and quarry dust. The leachate samples were derived from fresh and hardened CLSM mixtures, and studied for leaching and electrical resistivity. The release of various contaminants and the consequent environmental impact caused by the contaminants were studied by the measurement of contaminants in the bleed, in the leachate at 28 days, and on the leachate derived from crushed block and whole block leaching done over a period of 126 days. Results indicated that the CLSM mixtures are non corrosive; diffusion was the leaching mechanism; and the contaminants were found to be moderate to low mobility.
    Matched MeSH terms: Metals/chemistry
  14. Alajerami YS, Hashim S, Ramli AT, Saleh MA, Saripan MI, Alzimami K, et al.
    Appl Radiat Isot, 2013 Aug;78:21-5.
    PMID: 23644162 DOI: 10.1016/j.apradiso.2013.03.095
    New glasses Li2CO3-K2CO3-H3BO3 (LKB) co-doped with CuO and MgO, or with TiO2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5-4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on (60)Co dose is linear in the range of 1-1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry.
    Matched MeSH terms: Metals/chemistry*
  15. Hashim Y, Sidek O
    J Nanosci Nanotechnol, 2013 Jan;13(1):242-9.
    PMID: 23646723
    This study is the first to demonstrate dimensional optimization of nanowire-complementary metal-oxide-semiconductor inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. Results indicate that optimization depends on both dimensions ratio and digital voltage level (Vdd). Diameter optimization reveals that when Vdd increases, the optimized value of (Dp/Dn) decreases. Channel length optimization results show that when Vdd increases, the optimized value of Ln decreases and that of (Lp/Ln) increases. Dimension ratio optimization reveals that when Vdd increases, the optimized value of Kp/Kn decreases, and silicon nanowire transistor with suitable dimensions (higher Dp and Ln with lower Lp and Dn) can be fabricated.
    Matched MeSH terms: Metals/chemistry*
  16. Lintang HO, Kinbara K, Yamashita T, Aida T
    Chem Asian J, 2012 Sep;7(9):2068-72.
    PMID: 22431445 DOI: 10.1002/asia.201200041
    An organometallic/silica nanocomposite of a 1D cylindrical assembly of a trinuclear gold(I)-pyrazolate complex ([Au(3)Pz(3)]) that was confined inside the nanoscopic channels of hexagonal mesoporous silica ([Au(3)Pz(3)]/silica(hex)), emitted red light with a luminescence center at 693 nm upon photoexcitation at 276 nm owing to a Au(I)-Au(I) metallophilic interaction. When a film of [Au(3)Pz(3)]/silica(hex) was dipped into a solution of Ag(+) in tetrahydrofuran (THF), the resulting nanocomposite material (Ag@[Au(3)Pz(3)]/silica(hex)) emitted green light with a new luminescence center at 486 nm, which was characteristic of a Au(I)-Ag(I) heterometallic interaction. Changes in the emission/excitation and XPS spectra of Ag@[Au(3)Pz(3)]/silica(hex) revealed that Ag(+) ions permeated into the congested nanochannels of [Au(3)Pz(3)]/silica(hex), which were filled with the cylindrical assembly of [Au(3)Pz(3)].
    Matched MeSH terms: Metals/chemistry*
  17. Mamat M, Samad SA, Hannan MA
    Sensors (Basel), 2011;11(6):6435-53.
    PMID: 22163964 DOI: 10.3390/s110606435
    This paper reports the design of an electronic nose (E-nose) prototype for reliable measurement and correct classification of beverages. The prototype was developed and fabricated in the laboratory using commercially available metal oxide gas sensors and a temperature sensor. The repeatability, reproducibility and discriminative ability of the developed E-nose prototype were tested on odors emanating from different beverages such as blackcurrant juice, mango juice and orange juice, respectively. Repeated measurements of three beverages showed very high correlation (r > 0.97) between the same beverages to verify the repeatability. The prototype also produced highly correlated patterns (r > 0.97) in the measurement of beverages using different sensor batches to verify its reproducibility. The E-nose prototype also possessed good discriminative ability whereby it was able to produce different patterns for different beverages, different milk heat treatments (ultra high temperature, pasteurization) and fresh and spoiled milks. The discriminative ability of the E-nose was evaluated using Principal Component Analysis and a Multi Layer Perception Neural Network, with both methods showing good classification results.
    Matched MeSH terms: Metals/chemistry
  18. Hussein MZ, Nasir NM, Yahaya AH
    J Nanosci Nanotechnol, 2008 Nov;8(11):5921-8.
    PMID: 19198327
    Metanilate-layered double hydroxide nanohybrid compound was synthesized for controlled release purposes through co-precipitation method of the metal cations and organic anion. The effect of various divalent metal cations (M2+), namely Zn2+, Mg2+ and Ca2+ on the formation of metanilate-LDH nanohybrids, in which metanilate anion was intercalated into three different layered double hydroxide (LDH) systems; Zn-Al, Mg-Al and Ca-Al were investigated. The syntheses were carried out with M2+ to Al3+ initial molar ratio, R of 4. The pH of the mother liquor was maintained at pH 7.5 and 10 during the synthesis, and the resulting mixture was aged at around 70 degrees C for about 18 h. The intercalation of metanilate anion into the host was found to be strongly influenced by the M2+ that formed the inorganic metal hydroxide layers. Under our experimental condition, the formation of the nanohybrid materials was found to be more feasible for the Zn-Al than for the other two systems, in which the former showed well-ordered layered organic-inorganic nanohybrid structure with good crystallinity. Intercalation is confirmed by the expansion of the interlayer spacing to about 15-17 A when metanilate was introduced into the interlamellae of Zn-Al LDHs. In addition, CHNS and FTIR analyses also support that metanilate anion has been successfully intercalated into the interlamellae of the inorganic LDH. Apart from M2+, this study also shows that the initial pH of the mother liquor plays an important role in determining the physicochemical properties of the resulting nanohybrids, especially the mole fraction of the Zn2+ substituted by the Al3+ ion in the LDH inorganic sheets which in turn controlled the loading percentage of the organic anion, surface properties and the true density. Preliminary study shows that LDH can be used to host beneficial guests, active agent with controlled release capability of the guests. Generally the overall process is governed by pseudo second order kinetic but for the first 180 min, the release process can be slightly better described by parabolic diffusion than the other models.
    Matched MeSH terms: Metals/chemistry*
  19. Prasanna MV, Chidambaram S, Shahul Hameed A, Srinivasamoorthy K
    Environ Monit Assess, 2010 Sep;168(1-4):63-90.
    PMID: 19609693 DOI: 10.1007/s10661-009-1092-5
    Gadilam river basin has gained its importance due to the presence of Neyveli Lignite open cast mines and other industrial complexes. It is also due to extensive depressurization of Cuddalore aquifer, and bore wells for New Veeranam Scheme are constructed downstream of the basin. Geochemical indicators of groundwater were used to identify the chemical processes that control hydrogeochemistry. Chemical parameters of groundwater such as pH, electrical conductivity, total dissolved solids, sodium (Na(+)), potassium (K(+)), calcium (Ca(+)), magnesium (Mg(+)), bicarbonate (HCO(-)(3)), sulfate (SO(-)(4)), phosphate (PO(-)(4)), and silica (H(4)SiO(4)) were determined. Interpretation of hydrogeochemical data suggests that leaching of ions followed by weathering and anthropogenic impact controls the chemistry of the groundwater. Isotopic study reveals that recharge from meteoric source in sedimentary terrain and rock-water interaction with significant evaporation prevails in hard rock region.
    Matched MeSH terms: Metals/chemistry
  20. Thangalazhy-Gopakumar S, Al-Nadheri WM, Jegarajan D, Sahu JN, Mubarak NM, Nizamuddin S
    Bioresour. Technol., 2015 Feb;178:65-9.
    PMID: 25278112 DOI: 10.1016/j.biortech.2014.09.068
    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products.
    Matched MeSH terms: Metals/chemistry
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links