Displaying publications 1 - 20 of 194 in total

  1. Tan YJ, Tan YS, Yeo CI, Chew J, Tiekink ERT
    J. Inorg. Biochem., 2019 03;192:107-118.
    PMID: 30640150 DOI: 10.1016/j.jinorgbio.2018.12.017
    Four binuclear phosphanesilver(I) dithiocarbamates, {cyclohexyl3PAg(S2CNRR')}2 for R = R' = Et (1), CH2CH2 (2), CH2CH2OH (3) and R = Me, R' = CH2CH2OH (4) have been synthesised and characterised by spectroscopy and crystallography, and feature tri-connective, μ2-bridging dithiocarbamate ligands and distorted tetrahedral geometries based on PS3 donor sets. The compounds were evaluated for anti-bacterial activity against a total of 12 clinically important pathogens. Based on minimum inhibitory concentration (MIC) and cell viability tests (human embryonic kidney cells, HEK 293), 1-4 are specifically active against Gram-positive bacteria while demonstrating low toxicity; 3 and 4 are active against methicillin resistant S. aureus (MRSA). Across the series, 4 was most effective and was more active than the standard anti-biotic chloramphenicol. Time kill assays reveal 1-4 to exhibit both time- and concentration-dependent pharmacokinetics against susceptible bacteria. Compound 4 demonstrates rapid (within 2 h) bactericidal activity at 1 and 2 × MIC to reach a maximum decrease of 5.2 log10 CFU/mL against S. aureus (MRSA).
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/growth & development*
  2. Atshan SS, Nor Shamsudin M, Sekawi Z, Lung LT, Hamat RA, Karunanidhi A, et al.
    J. Biomed. Biotechnol., 2012;2012:976972.
    PMID: 22701309 DOI: 10.1155/2012/976972
    Clinical information about genotypically different clones of biofilm-producing Staphylococcus aureus is largely unknown. We examined whether different clones of methicillin-sensitive and methicillin-resistant S. aureus (MSSA and MRSA) differ with respect to staphylococcal microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) in biofilm formation. The study used 60 different types of spa and determined the phenotypes, the prevalence of the 13 MSCRAMM, and biofilm genes for each clone. The current investigation was carried out using a modified Congo red agar (MCRA), a microtiter plate assay (MPA), polymerase chain reaction (PCR), and reverse transcriptase polymerase chain reaction (RT-PCR). Clones belonging to the same spa type were found to have similar properties in adheringto the polystyrene microtiter plate surface. However, their ability to produce slime on MCRA medium was different. PCR experiments showed that 60 clones of MSSA and MRSA were positive for 5 genes (out of 9 MSCRAMM genes). icaADBC genes were found to be present in all the 60 clones tested indicating a high prevalence, and these genes were equally distributed among the clones associated with MSSA and those with MRSA. The prevalence of other MSCRAMM genes among MSSA and MRSA clones was found to be variable. MRSA and MSSA gene expression (MSCRAMM and icaADBC) was confirmed by RT-PCR.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/genetics*; Methicillin-Resistant Staphylococcus aureus/growth & development; Methicillin-Resistant Staphylococcus aureus/pathogenicity
  3. Soo Yean CY, Selva Raju K, Xavier R, Subramaniam S, Gopinath SC, Chinni SV
    PLoS One, 2016;11(7):e0158736.
    PMID: 27367909 DOI: 10.1371/journal.pone.0158736
    Non-protein coding RNA (npcRNA) is a functional RNA molecule that is not translated into a protein. Bacterial npcRNAs are structurally diversified molecules, typically 50-200 nucleotides in length. They play a crucial physiological role in cellular networking, including stress responses, replication and bacterial virulence. In this study, by using an identified npcRNA gene (Sau-02) in Methicillin-resistant Staphylococcus aureus (MRSA), we identified the Gram-positive bacteria S. aureus. A Sau-02-mediated monoplex Polymerase Chain Reaction (PCR) assay was designed that displayed high sensitivity and specificity. Fourteen different bacteria and 18 S. aureus strains were tested, and the results showed that the Sau-02 gene is specific to S. aureus. The detection limit was tested against genomic DNA from MRSA and was found to be ~10 genome copies. Further, the detection was extended to whole-cell MRSA detection, and we reached the detection limit with two bacteria. The monoplex PCR assay demonstrated in this study is a novel detection method that can replicate other npcRNA-mediated detection assays.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/cytology; Methicillin-Resistant Staphylococcus aureus/genetics*; Methicillin-Resistant Staphylococcus aureus/isolation & purification*
  4. Thong KL, Junnie J, Liew FY, Yusof MY, Hanifah YA
    J. Microbiol. Biotechnol., 2009 Oct;19(10):1265-70.
    PMID: 19884790
    The objectives of this study were to determine the antibiotypes, SCCmec subtypes, PVL carriage, and genetic diversity of MRSA strains from a tertiary hospital. Sixtysix MRSA strains were selected randomly (2003, 2004, and 2007) and tested for the Panton-Valentine leukocidin gene, mecA gene, and SCCmec type via a PCR. The antibiograms were determined using a standard disc diffusion method, and the genetic diversity of the isolates was determined by PFGE. Thirty-four antibiograms were obtained, with 55% of the 66 strains exhibiting resistance to more than 4 antimicrobials. All the isolates remained susceptible to vancomycin, and low resistance rates were noted for fusidic acid (11%), rifampicin (11%), and clindamycin acid (19%). The MRSA isolates that were multisensitive (n=12) were SCCmec type IV, whereas the rest (multiresistant) were SCCmec type III. Only two isolates (SCCmec type IV) tested positive for PVL, whereas all the isolates were mecA-positive. The PFGE was very discriminative and subtyped the 66 isolates into 55 pulsotypes (F=0.31-1.0). The multisensitive isolates were distinctly different from the multidrug-resistant MRSA. In conclusion, no vancomycin-resistant isolate was observed. The Malaysian MDR MRSA isolates were mostly SCCmec type III and negative for PVL. These strains were genetically distinct from the SCCmec type IV strains, which were sensitive to SXT, tetracycline, and erythromycin. Only two strains were SCCmec IV and PVL-positive. The infections in the hospital concerned were probably caused by multiple subtypes of MRSA.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/classification; Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/genetics; Methicillin-Resistant Staphylococcus aureus/isolation & purification*
  5. Atyah MA, Zamri-Saad M, Siti-Zahrah A
    Vet Microbiol, 2010 Aug 26;144(3-4):502-4.
    PMID: 20189324 DOI: 10.1016/j.vetmic.2010.02.004
    Swabs from the brain, eyes and kidneys of tilapia from 11 farms were collected for a period of 2 years. They were grown on blood agar before cultures of suspected Staphylococcus aureus were subjected to ABI STAPH Detection Kit and PCR for identification. They were then grown on oxacillin resistance screening agar base (ORSAB) and subjected to PCR using the MRSA 17 kb forward and reverse primers to identify the methicillin-resistant S. aureus (MRSA). A total of 559 isolates of Staphylococcus spp. were obtained, from which 198 (35%) isolates were identified as S. aureus. Of the 198 S. aureus isolated from tilapias, 98 (50%) were identified as methicillin-resistant S. aureus (MRSA). Since global spread of multi-drug-resistant bacteria has increased in the past decade, this new finding in fish should be of concern.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/isolation & purification*
  6. Zajmi A, Mohd Hashim N, Noordin MI, Khalifa SA, Ramli F, Mohd Ali H, et al.
    PLoS One, 2015;10(6):e0128157.
    PMID: 26030925 DOI: 10.1371/journal.pone.0128157
    Staphylococci are facultative anaerobes, perfectly spherical un-encapsulated cocci, with a diameter not exceeding 1 micrometer in diameter. Staphylococcus aureus are generally harmless and remain confined to the skin unless they burrow deep into the body, causing life-threatening infections in bones, joints, bloodstream, heart valves and lungs. Among the 20 medically important staphylococci species, Staphylococcus aureus is one of the emerging human pathogens. Streptomycin had its highest potency against Staphylococcus infections despite the likelihood of getting a resistant type of staphylococcus strains. Methicillin-resistant S. aureus (MRSA) is the persister type of Staphylococcus aureus and was evolved after decades of antibiotic misuse. Inadequate penetration of the antibiotic is one of the principal factors related to success/failure of the therapy. The active drug needs to reach the bacteria at concentrations necessary to kill or suppress the pathogen's growth. In turn the effectiveness of the treatment relied on the physical properties of Staphylococcus aureus. Thus understanding the cell integrity, shape and roughness is crucial to the overall influence of the therapeutic agent on S. aureus of different origins. Hence our experiments were designed to clarify ultrastructural changes of S. aureus treated with streptomycin (synthetic compound) in comparison to artonin E (natural compound). In addition to the standard in vitro microbial techniques, we used transmission electron microscopy to study the disrupted cell architecture under antibacterial regimen and we correlate this with scanning electron microscopy (SEM) to compare results of both techniques.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/cytology; Methicillin-Resistant Staphylococcus aureus/drug effects; Methicillin-Resistant Staphylococcus aureus/ultrastructure
  7. Alreshidi MA, Alsalamah AA, Hamat RA, Neela V, Alshrari AS, Atshan SS, et al.
    PMID: 23318757 DOI: 10.1007/s10096-012-1801-9
    One hundred and twenty methicillin-resistant Staphylococcus aureus (MRSA) isolated from cancer and non-cancer patients in Saudi Arabia were investigated for antibiotic resistance, virulence determinants and genotypes. The majority of MRSA isolates from cancer (n = 44, 73.3 %) and non-cancer patients (n = 34, 56.7 %) were multi-resistant to more than four classes of antibiotics. Virulence gene profiling showed that all strains were commonly positive for adhesin genes, except ebps and bbp genes, which were not detected in any isolate. Although the presence of adhesin genes varied slightly among MRSA isolates from cancer and non-cancer patients, these variations were not found to be statistically significant. In contrast, the presence of the toxin genes seb, sec, seg and sei was significantly elevated in MRSA strains isolated from cancer patients. Multilocus sequence typing (MLST) detected six and nine sequence types (STs) among isolates from cancer and non-cancer patients, respectively. Using spa typing, 12 and 25 types were detected, including four new types. The ability of different MRSA clones to become multi-resistant and their ability to acquire different virulence factors may contribute to their success as pathogens in individual groups of patients.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/genetics*; Methicillin-Resistant Staphylococcus aureus/isolation & purification; Methicillin-Resistant Staphylococcus aureus/pathogenicity
  8. Lim KT, Hanifah YA, Yusof M, Thong KL
    Indian J Med Microbiol, 2012 Apr-Jun;30(2):203-7.
    PMID: 22664438 DOI: 10.4103/0255-0857.96693
    The objective of this study was to determine the expression and transferability of tetracycline and erythromycin resistance among 188 MRSA strains from a Malaysian tertiary hospital. The minimum inhibitory concentrations (MICs) for oxacillin, erythromycin, tetracycline and ciprofloxacin ranged from 4 to 512 μg/ml, 0.25 to 256 μg/ml, 0.5 to 256 μg/ml and 0.5 to 512 μg/ml, respectively. Tetracycline-resistant strains showed co-resistance towards ciprofloxacin and erythromycin. There was a significant increase (P<0.05) of high-level tetracycline (≥MIC 256 μg/ml) and erythromycin (≥MIC 128 μg/ml) resistant strains in between the years 2003 and 2008. All erythromycin-resistant strains harboured ermA or ermC gene and all tetracycline-resistant strains harboured tetM or tetK gene. The blaZ was detected in all MRSA strains, whereas ermA, tetM, ermC, tetK and msrA genes were detected in 157 (84%), 92 (49%), 40 (21%), 39 (21%) and 4 (2%) MRSA strains, respectively. The blaZ, tetM, ermC and tetK genes were plasmid-encoded, with ermC gene being easily transmissible. Tn5801-like transposon was present in 78 tetM-positive strains. ermA and tetM genes were the most prevalent erythromycin and tetracycline resistance determinants, respectively, in MRSA strains. The association of resistance genes with mobile genetic elements possibly enhances the spread of resistant traits in MRSA.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/genetics*; Methicillin-Resistant Staphylococcus aureus/isolation & purification
  9. Atshan SS, Shamsudin MN, Lung LT, Sekawi Z, Ghaznavi-Rad E, Pei CP
    J. Biomed. Biotechnol., 2012;2012:417247.
    PMID: 22529705 DOI: 10.1155/2012/417247
    The ability to adhere and produce biofilms is characteristic of enhanced virulence among isolates of methicillin-resistant Staphylococcus aureus (MRSA). The aim of the study is to find out whether these characteristics are consistently similar among isolates variations of MRSA. The study used 30 various isolates of MRSA belong to 13 spa types and 5 MLST types and determined the aggregation, the adherence, and the production of biofilms and slime for each isolate. The methods used to evaluate these characteristics were a modified Congo red agar assay (MCRA), a microtiter plate assay (MPA), high-magnification light microscopy, scanning electron microscopy (SEM), and PCR. The study found that isolates belonging to similar Spa, SCCmec, and ST types have similar abilities to produce biofilms; however, their ability to produce slime on CRA was found to be different. Moreover, isolates that have different Spa types showed high variation in their ability to produce biofilms. The results of light microscope revealed the isolates that produced strong and weak biofilms and formed similar aggregation on the glass surfaces. SEM results showed that all 30 MRSA isolates that were tested were 100% positive for biofilm formation, although to varying degrees. Further testing using PCR confirmed that 100% of the 30 isolates tested were positive for the presence of the icaADBC, fnbA, eno, ebps, clfA, and clfB genes. The prevalence of fib, cna, fnbB, and bbp in MRSA clones was 90, 93.33, 53.33, and 10%, respectively. This study indicate that differences in biofilm production capacities are caused by the differences in surface protein A (Spa) type and are not due to differences in MLST and SCCmec types.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/classification; Methicillin-Resistant Staphylococcus aureus/genetics; Methicillin-Resistant Staphylococcus aureus/physiology*
  10. Norazah A, Law NL, Abd Ghani MK, Salbiah N
    Med J Malaysia, 2012 Jun;67(3):269-73.
    PMID: 23082415
    This study was conducted to detect the presence of heterogenous vancomycin-intermediate Staphylococcus aureus (heteroVISA) among MRSA isolates in a major hospital. Forty-three MRSA isolates with vancomycin MIC 2 microg/ml collected in 2009 was screened for heteroVISA using Etest Glycopeptide Resistance Detection (GRD) and confirmed by population analysis profile-area under curve method. The genetic relatedness of heteroVISA strains with other MRSA was examined by pulsed-field gel electrophoresis (PFGE) method. Two isolates were shown to be heteroVISA and derived from the same clone. This showed that heteroVISA strains were already present among our local strains since 2009 and were genetically related to other susceptible strains.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects; Methicillin-Resistant Staphylococcus aureus/genetics; Methicillin-Resistant Staphylococcus aureus/isolation & purification*
  11. Ghaznavi-Rad E, Neela V, Nor Shamsudin M, Ghasemzadeh Moghaddam H, Tavakol M, van Belkum A, et al.
    Eur. J. Clin. Microbiol. Infect. Dis., 2012 Dec;31(12):3317-21.
    PMID: 23010901 DOI: 10.1007/s10096-012-1698-3
    Methicillin-resistant Staphylococcus aureus (MRSA) is well known for its epidemicity, with the emergence of new clones on a daily basis. Diversity in the clonal types of MRSA challenges the success of treatment, as different clones respond to different sets of antibiotics. However, the antibiotic susceptibility among the isolates within the same clones is largely unexplored. In a previous study on MRSA epidemiology in Malaysia, we identified six major clonal complexes (ST-239-CC8, ST-1-CC1, ST-188-CC1, ST-22-CC22, ST-7-CC7 and ST-1283-CC8). In the present study, we investigated the antibiotic susceptibility patterns of isolates of different clones. Three hundred and eighty-nine MRSA isolates were subjected to the disc diffusion test, oxacillin minimum inhibitory concentration (MIC) determination and assessment of the distribution of macrolide, lincosamide and streptogramin B (MLS(B)) resistance genes. Thirty-six different antibiotic profiles were observed: 30 (83.3 %) among ST-239, 2 (5.6 %) among ST-1283 and 1 (2.8 %) each for ST-1, ST-7, ST-22 and ST-188. All ST-239 (362, 9 %) isolates were multiple drug-resistant (MDR; resistant to more than three classes of antibiotics) and had oxacillin MICs >256 mg/l. Among the 385 clindamycin-resistant isolates, 375 (96.4 %) illustrated inducible resistance (D-zone-positive), while 10 (2.6 %) showed constitutive resistance. The vast majority of the macrolide-resistant isolates carried the ermA gene (95.1 %), followed by ermC (12.9 %). Diversity in the antibiotic susceptibilities of isolates within the clones emphasises the need for continuous surveillance of MDR strains to prescribe the correct antibiotic rather than empirical treatment. This will likely reduce the emergence of new endemic or epidemic resistant MRSA clones.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/classification*; Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/genetics
  12. Lim KT, Hanifah YA, Yusof MY, Goering RV, Thong KL
    Diagn Microbiol Infect Dis, 2012 Oct;74(2):106-12.
    PMID: 22770652 DOI: 10.1016/j.diagmicrobio.2012.05.033
    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the main bacterial pathogens responsible for nosocomial infections leading to pneumonia, bloodstream, skin, and soft tissue infections. The objective of this study was to investigate the genomic changes of MRSA in a tertiary hospital between the years 2003, 2004, 2007, and 2008. One hundred fifty-four MRSA strains were characterized by multilocus sequence typing (MLST), spa, and mec-associated dru typing. Among the 154 strains, 29 different dru, 15 spa, and 8 MLST types were identified. Seven sequence types (STs) (ST239, ST22, ST5, ST6, ST80, ST573, and ST241) were identified among 2007-08 strains, although only 2 STs (ST239 and ST20) were observed among 2003 strains. Clones ST239-t037-dt13g, ST22-t032-(dt10a and dt10aw), and 28 other MRSA clones being introduced in 2007-2008 have replaced the ST239-t037 (dt13d, 14h, 13i, 13l, 13m, 15m, 15l, and 11al) clones present in 2003. The predominant MLST clone, ST239 (90.3%), was further distinguished into 7 different spa types and 26 different dru types, including 17 novel dru types. Maximum parsimony tree based on dru repeats revealed that 10 dru types (dt11am, dt13j, dt15n, dt13q, dt13n, dt13p, dt13f, dt13ao, dt12j, dt7v) shared the same MLST-spa types with dt13d, suggesting that these MRSA clones might have evolved from ST239-t037-dt13d. In conclusion, our data showed that the ST239-t037-dt13d clone and other MRSA clones in 2003 were replaced by ST239-t037-dt13g and other new emerging spa and dru types.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/classification*; Methicillin-Resistant Staphylococcus aureus/genetics; Methicillin-Resistant Staphylococcus aureus/isolation & purification*
  13. Goh, K.L., Nazri, M.Y., Ong, C.L.
    Vancomycin bead is an important ancillary treatment for osteomyelitis caused by methicillin-resistant Staphylococcus aureus (MRSA). However, red-man syndrome, which can be a life-threatening complication of vancomycin, may occur from the use of vancomycin beads albeit rarely. We report our first case of red-man syndrome caused by vancomycin bead's insertion for chronic osteomyelitis. Symptomatic treatment was not
    effective and removal of the vancomycin beads seems to be the best treatment for this condition.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus
  14. Neela V, Ghasemzadeh Moghaddam H, van Belkum A, Horst-Kreft D, Mariana NS, Ghaznavi Rad E
    PMID: 19779745 DOI: 10.1007/s10096-009-0813-6
    Methicillin-resistant Staphylococcus aureus (MRSA) from Malaysia were shown to possess staphylococcal cassette chromosome mec (SCCmec)-III and IIIA. Spa sequencing and multi-locus sequence typing (MLST) documented t037 and ST 239 (CC8) for 83.3% of the isolates. This confirms observations in several other Far Eastern countries and corroborates the epidemicity of this clone.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/classification*; Methicillin-Resistant Staphylococcus aureus/genetics*; Methicillin-Resistant Staphylococcus aureus/isolation & purification
  15. Tan XE, Neoh HM, Hussin S, Zin NM
    Asian Pac J Trop Biomed, 2013 Mar;3(3):224-8.
    PMID: 23620843 DOI: 10.1016/S2221-1691(13)60055-6
    To genotypically characterize methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from medical and surgical wards in Universiti Kebangsaan Malaysia Medical Centre (UKMMC) in 2009.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/genetics*; Methicillin-Resistant Staphylococcus aureus/isolation & purification
  16. Aklilu E, Zakaria Z, Hassan L, Hui Cheng C
    PLoS One, 2012;7(8):e43329.
    PMID: 22937034 DOI: 10.1371/journal.pone.0043329
    Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a problem in veterinary medicine and is no longer considered as a mere nosocomial pathogen. We studied the occurrence of MRSA in veterinary personnel, cats and dogs and the environmental premises in University Veterinary Hospital (UVH). We found the prevalence of MRSA as follows: UVH 2/28 (7.1%) staff, 8/100 (8%) of the pets [5/50 (10%) of the dogs and 3/50 (6%) of the cats)], and 9/28 (4.5%) of the environmental samples. Antibiotic sensitivity tests (AST) show multi-resistance characteristics of the MRSA and the minimum inhibitory concentration (MIC) values for the isolates ranged from 1.5 µg to >256 µg/ml. Molecular typing by using multi-locus sequence typing (MLST), staphylococcal protein A typing (spa typing) and pulsed-field gel electrophoresis (PFGE) was conducted and the results from MLST indicated that an isolate from a veterinary personnel (PG21), typed as ST1241 belonged to the same clonal complex (CC) as the two isolates from two dogs (DG16 and DG20), both being typed as ST59. The PFGE results revealed that the two isolates from two veterinary personnel, PG21 and PG16 belonged to closely related MRSA strains with isolates from dog (DG36) and from environmental surface (EV100) respectively. The fact that PFGE revealed close similarity between isolates from humans, a dog and environmental surfaces indicates the possibility for either of them to be the source of MRSA and the potential routes and risks of spread.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/classification; Methicillin-Resistant Staphylococcus aureus/genetics*
  17. Norazah A, Salbiah N, Nurizzat M, Santhana R
    Med J Malaysia, 2009 Jun;64(2):166-7.
    PMID: 20058580 MyJurnal
    A 64-year old patient, who had bacteraemia, did not respond to vancomycin despite the MRSA isolate being sensitive to the antibiotic at MIC 2 microg/mL. Electron microscopy of the MRSA isolate showed thickening of the cell wall, which was not observed in MRSA with lower vancomycin MIC.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/ultrastructure
  18. Al-Talib H, Yean CY, Al-Khateeb A, Hassan H, Singh KK, Al-Jashamy K, et al.
    BMC Microbiol., 2009;9:113.
    PMID: 19476638 DOI: 10.1186/1471-2180-9-113
    Staphylococcus aureus is a major human pathogen, especially methicillin-resistant S. aureus (MRSA), which causes a wide range of hospital and community-acquired infections worldwide. Conventional testing for detection of MRSA takes 2-5 days to yield complete information of the organism and its antibiotic sensitivity pattern.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/genetics; Methicillin-Resistant Staphylococcus aureus/isolation & purification*
  19. Basri DF, Xian LW, Abdul Shukor NI, Latip J
    Biomed Res Int, 2014;2014:461756.
    PMID: 24783205 DOI: 10.1155/2014/461756
    Stilbenoids have been considered as an alternative phytotherapeutic treatment against methicillin-resistant Staphylococcus aureus (MRSA) infection. The combined effect of ε-viniferin and johorenol A with the standard antibiotics, vancomycin and linezolid, was assessed against MRSA ATCC 33591 and HUKM clinical isolate. The minimum inhibitory concentration (MIC) value of the individual tested compounds and the fractional inhibitory concentration index (FICI) value of the combined agents were, respectively, determined using microbroth dilution test and microdilution checkerboard (MDC) method. Only synergistic outcome from checkerboard test will be substantiated for its rate of bacterial killing using time-kill assay. The MIC value of ε -viniferin against ATCC 33591 and johorenol A against both strains was 0.05 mg/mL whereas HUKM strain was susceptible to 0.1 mg/mL of ε-viniferin. MDC study showed that only combination between ε-viniferin and vancomycin was synergistic against ATCC 33591 (FICI 0.25) and HUKM (FICI 0.19). All the other combinations (ε-viniferin-linezolid, johorenol A-vancomycin, and johorenol A-linezolid) were either indifferent or additive against both strains. However, despite the FICI value showing synergistic effect for ε-viniferin-vancomycin, TKA analysis displayed antagonistic interaction with bacteriostatic action against both strains. As conclusion, ε-viniferin can be considered as a bacteriostatic stilbenoid as it antagonized the bactericidal activity of vancomycin. These findings therefore disputed previous report that ε-viniferin acted in synergism with vancomycin but revealed that it targets similar site in close proximity to vancomycin's action, possibly at the bacterial membrane protein. Hence, this combination has a huge potential to be further studied and developed as an alternative treatment in combating MRSA in future.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/drug effects*; Methicillin-Resistant Staphylococcus aureus/physiology*
  20. Ho WY, Choo QC, Chew CH
    Microb. Drug Resist., 2017 Mar;23(2):215-223.
    PMID: 27203527 DOI: 10.1089/mdr.2015.0250
    We investigated the epidemiology and clonality of 175 nonrepetitive methicillin-resistant Staphylococcus aureus (MRSA) isolates from clinical specimens collected between 2011 and 2012 in Kinta Valley in Malaysia. Molecular tools such as polymerase chain reaction, pulsed-field gel electrophoresis, and staphylococcal protein A (spa) typing were used. Our study revealed the predominance of three closely related ermA(+) SCCmec type III pulsotypes belonging to spa type t037 (Brazilian-Hungarian clone), which were deficient in the locus F, but positive for the ccrC gene in majority (65.7%) of the MRSA infections in this region. The first evidence of SCCmec type II MRSA in the country, belonging to spa type t2460, was also noted. Although the carriage of pvl gene was uncommon (8.6%) and mostly confined to either SCCmec type IV or SCCmec type V isolates, most of these isolates belonged to spa types t345 or t657, which are associated with the Bengal-Bay CA-MRSA clone. Interestingly, spa t304 and t690 SCCmec type IV pvl(+) were also detected among the MRSA isolates. Data from this study show the rise of uncommon clones among MRSA isolates in Malaysia.
    Matched MeSH terms: Methicillin-Resistant Staphylococcus aureus/genetics*; Methicillin-Resistant Staphylococcus aureus/isolation & purification*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links