Displaying publications 1 - 20 of 237 in total

Abstract:
Sort:
  1. Supian Bin Samat
    The activity of two liquid mixed radionuclide sources in NPL'S standard glass ampoules were determined by gamma-ray spectrometry measurement using a standard point source placed at 38.5 cm axially above the detector. A radio nuclide 137Cs was chosen, Results obtained were within 3% agreement with the calculated value. The same degree of deviation was obtained when the NPL standard source of equal geometry, chemical composition and density was used.
    Keaktifan dua sumber radionuklid campuran cecair yang terkandung dalam bekas kaca piawai NPL ditentukan dengan kaedah pengukuran spektrometri sinar-gama menggunakan satu sumber titik piawai diletakkan pada 38.5 em di atas pengesan, Satu sumber radionuklid 137Cs dipilih. Keputusan yang diperoleh bersetuju dalam lingkungan 3% dengan nilai yang dikira. Darjah simpangan yang sama diperoleh apabila sumber piawai NPL yang sama dari segi geometri, komposisi kimia dan ketumpatan digunakan,
    Matched MeSH terms: Radioisotopes
  2. Yii MW, Zaharudin A, Abdul-Kadir I
    Appl Radiat Isot, 2009 Apr;67(4):630-5.
    PMID: 19168367 DOI: 10.1016/j.apradiso.2008.11.019
    Studies of naturally occurring radioactive materials (NORM) distribution of (226)Ra, (228)Ra and (40)K in East Malaysia were carried out as part of a marine coastal environment project. The results of measurements will serve as baseline data and background reference level for Malaysia coastlines. Sediments from 21 coastal locations and 10 near shore locations were collected for analyses. The samples were dried, finely ground, sealed in a container and stored for a minimum of 30 days to establish secular equilibrium between (226)Ra and (228)Ra and their respective radioactive progenies. They were counted using a high-purity germanium (HPGe) spectrometer covering the respective progeny energy peak. For (40)K, the presence of this was measured directly via its 1460 keV energy peak. The concentration of (226)Ra, (228)Ra and (40)K in samples obtained from coastal Sarawak ranged between 23 and 41 (mean 30+/-2) Bq/kg, 27 and 45 (mean 39+/-4) Bq/kg and 142 and 680 (mean 462+/-59) Bq/kg, respectively. Meanwhile, the concentration of (226)Ra, (228)Ra and (40)K for samples obtained from coastal Sabah ranged between 16 and 30 (mean 23+/-2) Bq/kg, 23 and 45 (mean 35+/-4) Bq/kg and 402 and 842 (mean 577+/-75) Bq/kg, respectively. For the Sarawak near shore stations, the concentration of (226)Ra, (228)Ra and (40)K ranged between 11 and 36 (mean 22+/-2) Bq/kg, 21 and 65 (mean 39+/-5) Bq/kg and 149 and 517 (mean 309+/-41) Bq/kg, respectively. Meanwhile, the concentration of (226)Ra, (228)Ra and (40)K for samples obtained from Sabah ranged between 9 and 31 (mean 14+/-2) Bq/kg, 10 and 48 (mean 21+/-3) Bq/kg and 140 and 580 (mean 269+/-36) Bq/kg, respectively. The calculated external hazard values of between 0.17 and 0.33 (less than unity) showed that there is little risk of external hazard to the workers handling the sediments.
    Matched MeSH terms: Radioisotopes/analysis*
  3. Tajudin SM, Namito Y, Sanami T, Hirayama H
    Radiat Prot Dosimetry, 2020 Jul 02;188(4):486-492.
    PMID: 31950186 DOI: 10.1093/rpd/ncz308
    As a reference photon field, several radionuclides have been used frequently, such as 241Am,137Cs and60 Co for calibration. These nuclides provide mono-energy photons for dosemeters covering few tens of keV-MeV. The main energy around 200 keV is important for both environmental and medical fields since the former should consider scattering photons and the later should measure photons from X-ray generator. In our previous work, a backscattered layout can provide a uniform photon field spectra and dose rate with an energy of 190 keV by using an affordable intensity 137 Cs gamma source. Several other quasi-monoenergetic photon fields in the range of 100-200 keV could be obtained by using several available gamma sources. Two calibrated environmental CsI(Tl) survey meters, Horiba PA-1000 and Mr. Gamma A2700, had been measured with the developed backscattered photon field to understand energy-dependent features in order to confirm dosemeter readings. Consequently, both scintillator instruments are sensitive for measurements of the relatively low dose rates at 190 keV.
    Matched MeSH terms: Cesium Radioisotopes*
  4. Nurhidayah W, Setyawati LU, Daruwati I, Gazzali AM, Subroto T, Muchtaridi M
    Molecules, 2022 Nov 18;27(22).
    PMID: 36432107 DOI: 10.3390/molecules27228009
    Natural compounds provide precursors with various pharmacological activities and play an important role in discovering new chemical entities, including radiopharmaceuticals. In the development of new radiopharmaceuticals, iodine radioisotopes are widely used and interact with complex compounds including natural products. However, the development of radiopharmaceuticals from natural compounds with iodine radioisotopes has not been widely explored. This review summarizes the development of radiopharmaceuticals from natural compounds using iodine radioisotopes in the last 10 years, as well as discusses the challenges and strategies to improve future discovery of radiopharmaceuticals from natural resources. Literature research was conducted via PubMed, from which 32 research articles related to the development of natural compounds labeled with iodine radioisotopes were reported. From the literature, the challenges in developing radiopharmaceuticals from natural compounds were the purity and biodistribution. Despite the challenges, the development of radiopharmaceuticals from natural compounds is a golden opportunity for nuclear medicine advancement.
    Matched MeSH terms: Iodine Radioisotopes*
  5. Ashhar Z, Ahmad Fadzil MF, Md Safee Z, Aziz F, Ibarhim UH, Nik Afinde NMF, et al.
    Appl Radiat Isot, 2024 Mar;205:111161.
    PMID: 38163386 DOI: 10.1016/j.apradiso.2023.111161
    Due to increased demand, cyclotron has an expanding role in producing Gallium-68 (68Ga) radiopharmaceuticals using solid and liquid targets. Though the liquid target produces lower end-of-bombardment activity compared to the solid target, our study presents the performance of 68Ga radiopharmaceuticals production using the liquid target by evaluating the end-of-bombardment activity and the end-of-purification activity of [68Ga]GaCl3. We also present the effect of increasing irradiation time, which significantly improves the end-of-synthesis yield. From the result obtained, the end-of-bombardment activity produced was 4.48 GBq, and the [68Ga]GaCl3 end-of-purification activity produced was 2.51 GBq with below-limit metallic impurities. Increasing the irradiation time showed a significant increase in the end-of-synthesis activity from 1.33 GBq to 1.95 GBq for [68Ga]Ga-PSMA-11 and from 1.13 GBq to 1.74 GBq for [68Ga]Ga-DOTA-TATE. Based on the improvements made, the liquid target production of 68Ga radiopharmaceuticals is feasible and reproducible to accommodate up to 5 patients per production. In addition, this work also discusses the issues encountered, together with the possible corrective and preventative measures.
    Matched MeSH terms: Gallium Radioisotopes*
  6. Pradhoshini KP, Santhanabharathi B, Priyadharshini M, Ahmed MS, Murugan K, Sivaperumal P, et al.
    Environ Res, 2024 Mar 01;244:118000.
    PMID: 38128601 DOI: 10.1016/j.envres.2023.118000
    The present investigation is the first of its kind which aims to study the characteristics of microbial consortium inhabiting one of the natural high background radiation areas of the world, Chavara Coast in Kerala, India. The composition of the microbial community and their structural changes were evaluated under the natural circumstances with exorbitant presence of radionuclides in the sediments and after the radionuclide's recession due to mining effects. For this purpose, the concentration of radionuclides, heavy metals, net radioactivity estimation via gross alpha and beta emitters and other physiochemical characteristics were assessed in the sediments throughout the estuarine stretch. According to the results, the radionuclides had a significant effect in shaping the community structure and composition, as confirmed by the bacterial heterogeneity achieved between the samples. The results indicate that high radioactivity in the background environment reduced the abundance and growth of normal microbial fauna and favoured only the growth of certain extremophiles belonging to families of Piscirickettsiacea, Rhodobacteriacea and Thermodesulfovibrionaceae, which were able to tolerate and adapt towards the ionizing radiation present in the environment. In contrast, communities from Comamondacea, Sphingomonadacea, Moraxellacea and Erythrobacteracea were present in the sediments collected from industrial outlet, reinforcing the potent role of radionuclides in governing the community pattern of microbes present in the natural environment. The study confirms the presence of these novel and unidentified bacterial communities and further opens the possibility of utilizing their usefulness in future prospects.
    Matched MeSH terms: Radioisotopes/analysis; Radioisotopes/pharmacology
  7. Bhuiyan MK, Siddique MA, Zafar M, Mustafa Kamal AH
    Isotopes Environ Health Stud, 2014;50(1):134-41.
    PMID: 24090093 DOI: 10.1080/10256016.2013.830613
    Concentrations of natural and fall-out radionuclides in the offshore seawater and sediment from some parts of the Bay of Bengal, Bangladesh, were determined using a coaxial germanium detector. The average activities of (238)U, (232)Th, (40)K and (137)Cs were recorded as 31.2±5.8, 51.9±9.4, 686.4±170.5 and 0.5±0.6 Bq kg(-1) dry weight, respectively, for sediment, and 4.8±1.2, 5.4±1.2 and 39.1±8.6 Bq L(-1) for (238)U, (232)Th and (40)K, respectively, in seawater. The concentration of (137)Cs in seawater was below the detection limit. The concentration of sediment (238)U was found to be positively correlated with (232)Th ([Formula: see text], p<0.05) and (40)K (r=0.96, p<0.01), while (232)Th was positively correlated with (40)K (r=0.91, p<0.05). In sediment, the concentration of (238)U was negatively correlated (r=-0.86, p<0.05) with sea depth. In the seawater sample, the only significant relationship found was between concentration of (232)Th and water depth (r=-0.86, p<0.05). One-factor analysis of variance (ANOVA) showed that the level of radioisotope concentrations of seawater and sediment was highly significant for (238)U (F=122, df=11, p=0.01), (232)Th (F=143, df=11, p=0.01) and (40)K (F=86, df=11, p=0.01). The results showed that the level of radioactivity decreased from coast to open sea. Imminent threat due to radioactivity was not observed in these parts of the Bay of Bengal.
    Matched MeSH terms: Potassium Radioisotopes/analysis; Radioisotopes/analysis*
  8. Dougherty G, Ng CE
    Health Phys, 1982 Dec;43(6):915-9.
    PMID: 7152953
    Matched MeSH terms: Cesium Radioisotopes/analysis*; Potassium Radioisotopes/analysis*
  9. Khandaker MU, Nagatsu K, Minegishi K, Zhang MR, Jalilian AR, Bradley DA
    Appl Radiat Isot, 2020 Sep 15;166:109428.
    PMID: 32979754 DOI: 10.1016/j.apradiso.2020.109428
    186gRe (T1/2 = 3.7183 d, E(β-)mean = 346.7 keV, I(β-)mean = 92.59%), a mixed beta and γ-emitter shows great potential for use in theranostic applications. The dominant 185Re(n,γ) route, via use of a nuclear reactor, provides 186gRe in carrier added form with low specific activity, while cyclotrons offer no carrier-added (NCA) high specific activity production of 186gRe. However, to be able to select the best possible nuclear reaction and to optimize the production route via the use of a cyclotron, information on the excitation function for the reaction of interest as well as for the competing reactions is necessary. Accordingly, we have conducted a detailed study of the excitation functions for natW(d, x) reactions in seeking optimized parameters for the NCA production of 186gRe. Noting a discrepancy among the experimental data, we made an evaluation of the available literature, finally selecting optimum parameters for the production of 186gRe via the 186W(d,2n)186Re reaction. These beam parameters were then used for batch production of 186gRe by irradiating an enriched 186W metallic powder target, followed by a subsequent automated chemical separation process. The preliminary results show 98.1% radionuclidic purity of 186gRe at 8 h subsequent to the End of Bombardment (EOB), offering the potential for use in clinical applications.
    Matched MeSH terms: Radioisotopes
  10. Yan L, Le QV, Sonne C, Yang Y, Yang H, Gu H, et al.
    J Hazard Mater, 2021 04 05;407:124771.
    PMID: 33388721 DOI: 10.1016/j.jhazmat.2020.124771
    Soil and water contaminated with radionuclides threaten the environment and public health during leaks from nuclear power plants. Remediation of radionuclides at the contaminated sites uses mainly physical and chemical methods such as vitrification, chemical immobilization, electro-kinetic remediation and soil excavation, capping and washing being among the preferred methods. These traditional technologies are however costly and less suitable for dealing with large-area pollution. In contrast to this, cost-effective and environment-friendly alternatives such as phytoremediation using plants to remove radionuclides from polluted sites in situ represent promising alternatives for environmental cleanup. Understanding the physiology and molecular mechanisms of radionuclides accumulation in plants is essential to optimize and improve this new remediation technology. Here, we give an overview of radionuclide contamination in the environment and biochemical characteristics for uptake, transport, and compartmentation of radionuclides in plants that characterize phytoextraction and its efficiency. Phytoextraction is an eco-friendly and efficient method for environmental removal of radionuclides at contaminated sites such as mine tailings. Selecting the most proper plant for the specific purpose, however, is important to obtain the best result together with, for example, applying soil amendments such as citric acid. In addition, using genetic engineering and optimizing agronomic management practices including regulation of atmospheric CO2 concentration, reasonable measures of fertilization and rational water management are important as well. For future application, the technique needs commercialization in order to fully exploit the technique at mining activities and nuclear industries.
    Matched MeSH terms: Radioisotopes
  11. Zal U’yun Wan Mahmood, Norfaizal Mohamed, Nita Salina Abu Bakar, Nur Hidaya Dmuliany Mohd Sidek
    MyJurnal
    Laboratory radiotracer experiment was performed to study the bioaccumulation of 109Cd and 134Cs in the Malaysian common fish White seabass (Lates calcarifer). The aim of this study was to compare the biokinetics of uptake these two contrasting radionuclides by White seabass in laboratory condition scale. Experiments were designed to determine the processes controlling uptake of both radionuclides following exposure via seawater. In this study, the curve shapes of the uptake kinetic of 109Cd and 134Cs in White seabass were slightly linear and gradually increased with increasing of exposure time but were not reach equilibrium in the period of the study of 21 days. This phenomenon can be concluded that radioelement concentrations of 109Cd and 134Cs; and exposure duration of this experiment may not adequately to reach steady-state condition for uptake kinetic of those radioelements in White seabass. Furthermore, this was indicated that the uptake rate of 109Cd was 1.79 times faster than 134Cs due to some factors may probably influenced the output of this experiment such as different element accumulation strategies, physiological, behavior of radioelements, etc.
    Matched MeSH terms: Radioisotopes
  12. Lowe BG
    Health Phys, 1979 Jun;36(6):723-4.
    PMID: 468543
    Matched MeSH terms: Cesium Radioisotopes/analysis*; Potassium Radioisotopes/analysis*
  13. Muhamad Samudi Yasir, Amran Ab Majid, Redzuwan Yahaya
    MyJurnal
    The main component of most building materials in Malaysia is rocks. These rocks have been found to naturally contain U-238, Th-232 and K-40. In order to estimate the radiological impact to the dweller, the level of radionuclides present in various building materials available in Malaysia were analyzed using gamma spectrometry. The radiation hazard indexes were calculated based on the above results. The results showed that the activity concentration of natural radionuclides U-238, Th-232, K-40 were between 19.0 Bq/kg – 42.2 Bq/kg, 16.5 Bq/kg –28.8 Bq/kg and 243.3 Bq/kg – 614.2 Bq/kg respectively. On the whole the radionuclides concentrations were still below the global average of 50 Bq/kg, 50 Bq/kg and 500 Bq/kg for U-238, Th-232 and K-40 respectively. The radiation hazard indexes of the building materials were also lower than the maximum value suggested.
    Matched MeSH terms: Radioisotopes
  14. Yusof MFM, Hamid PNKA, Tajuddin AA, Hashim R, Bauk S, Isa NM, et al.
    Radiol Phys Technol, 2017 Sep;10(3):331-339.
    PMID: 28718054 DOI: 10.1007/s12194-017-0408-3
    The aim of this study was to determine the suitability of tannin-added Rhizophora spp. particleboards as phantom materials in the application of low- and high-energy photons. The tannin-added Rhizophora spp. particleboards and density plug phantoms were created with a target density of 1.0 g/cm3. The elemental composition and effective atomic number of the particleboards were measured using energy dispersive X-ray analysis. The mass attenuation coefficient of the particleboards for low-energy photons were measured using the attenuation of X-ray fluorescence. The mass attenuation coefficients of high-energy photons were measured using the attenuation of 137Cs and 60Co gamma energies. The results were compared to the calculated value of water using XCOM calculations. The results showed that the effective atomic number and mass attenuation coefficients of tannin-added Rhizophora spp. particleboards were similar to those of water, indicating the suitability of tannin-added Rhizophora spp. particleboards as phantom materials for low- and high-energy photons.
    Matched MeSH terms: Cesium Radioisotopes*; Cobalt Radioisotopes*
  15. Joel ES, Maxwell O, Adewoyin OO, Olawole OC, Arijaje TE, Embong Z, et al.
    Sci Rep, 2019 03 12;9(1):4219.
    PMID: 30862825 DOI: 10.1038/s41598-019-40884-0
    Natural radioactivity in coastaline area soil of Ado-Odo/Ota has been carried out to ascertain the presence of radionuclides using gamma-ray spectroscopy (HPGe detector). The result showed that U-238, Th-232 and K-40 ranged from 24 ± 7-49 ± 10; 67 ± 6-120 ± 9 and 88 ± 17-139 ± 20 Bqkg-1 respectively. The radium equivalent for the samples ranged from 132.51 to 230.91 Bqkg-1 with mean value of 185.89 Bqkg-1. The mean value for the gamma dose rate for the soil samples was estimated to be 81.32 nGyh-1. The estimated values of annual effective dose equivalent ranged from 0.61 to 1.07 mSv y-1. The estimation of alpha index representative (Iα) ranged from 0.12 to 0.24 with mean value of 0.21 while the gamma representative index ranged between 0.465 and 0.810. The activity utilization index of the soil samples ranged from 1.09 to 1.89 with mean value of 1.53. The radiological implication in the study area has shown that the soil samples with gamma dose rate value of 89.99 nGyh-1, 94.39 nGyh-1, 97.40 nGyh-1 and 101.04 nGyh-1 respectively are higher than the recommended value of 80 nGyh-1 and may pose health implication for long term exposure.
    Matched MeSH terms: Potassium Radioisotopes; Radioisotopes
  16. Monica S, Jojo PJ, Khandaker MU
    Int J Radiat Biol, 2020 08;96(8):1028-1037.
    PMID: 32394771 DOI: 10.1080/09553002.2020.1767816
    Purpose: Ayurveda is one of the oldest systems of medicines in the world being practiced widely in the Indian subcontinent for more than 3000 years, and still remains as one of the important traditional health care systems. The Ayurvedic drugs are derived primarily from various parts of the plants, like root, leaf, flower, fruit or plant as a whole. Plants uptake minerals and other nutrients from the soil through their root system. Along with other minerals radionuclides present in the growing media also reach to the plant parts following the same pathway. Realizing the probable health hazards via the intake of Ayurvedic drugs, it is important to assess the concentration of natural radionuclides in commonly used medicinal plants.Materials and methods: NaI(Tl) scintillator-based gamma-ray spectrometry has been used to determine the activity concentrations of primordial radionuclides (226Ra, 232Th and 40K) in the most commonly used medicinal plant parts as ingredients of Ayurvedic medicines in India.Results and discussion: The average specific activity (Bqkg-1) of 226Ra, 232Th and 40K was found to be 43 ± 18, 36 ± 15[Formula: see text] and 230 ± 46, respectively. The estimated annual committed effective doses due to the intake of common Ayurvedic medicines at prescribed dosage was found to be 39 ± 16 µSv y-1,[Formula: see text] which is quite low as compared with the radiation dose limit of 1 mSvy-1 from all natural sources, reported by the International Commission on Radiological Protection (ICRP-60).Conclusions: It is found categorically that intake of Ayurvedic medicines at normal dosage poses no radiological hazard to the individual. Present results are significant in the wake of myths that many hazardous materials including radioisotopes are present at higher levels. Obtained results also serve as a reference information for the distribution of radionuclides in medicinal plant species.
    Matched MeSH terms: Radioisotopes/analysis*
  17. Azeez AB, Mohammed KS, Abdullah MMAB, Hussin K, Sandu AV, Razak RA
    Materials (Basel), 2013 Oct 23;6(10):4836-4846.
    PMID: 28788363 DOI: 10.3390/ma6104836
    Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised (137)Cs and ⁶⁰Co radioactive elements with photon energies of 0.662 MeV for (137)Cs and two energy levels of 1.17 and 1.33 MeV for the ⁶⁰Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10(-3) for (137)Cs and 0.92 ± 1.57 × 10(-3) for ⁶⁰Co. Substantial improvement in attenuation performance by 20%-25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%-30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities.
    Matched MeSH terms: Cesium Radioisotopes; Cobalt Radioisotopes
  18. Musa AS, Abdul Hadi MFR, Hashikin NAA, Ashour NI, Ying CK
    Appl Radiat Isot, 2023 Sep;199:110916.
    PMID: 37393764 DOI: 10.1016/j.apradiso.2023.110916
    A common therapeutic radionuclide used in hepatic radioembolization is yttrium-90 (90Y). However, the absence of gamma emissions makes it difficult to verify the post-treatment distribution of 90Y microspheres. Gadolinium-159 (159Gd) has physical properties that are suitable for therapy and post-treatment imaging in hepatic radioembolization procedures. The current study is innovative for conducting a dosimetric investigation of the use of 159Gd in hepatic radioembolization by simulating tomographic images using the Geant4 application for tomographic emission (GATE) Monte Carlo (MC) simulation. For registration and segmentation, tomographic images of five patients with hepatocellular carcinoma (HCC) who had undergone transarterial radioembolization (TARE) therapy were processed using a 3D slicer. The tomographic images with 159Gd and 90Y separately were simulated using the GATE MC Package. The output of simulation (dose image) was uploaded to 3D slicer to compute the absorbed dose for each organ of interests. 159Gd were able to provide a recommended dose of 120 Gy to the tumour, with normal liver and lungs absorbed doses close to that of 90Y and less than the respective maximum permitted doses of 70 Gy and 30 Gy, respectively. Compared to 90Y, 159Gd requires higher administered activity approximately 4.92 times to achieve a tumour dose of 120 Gy. Thus; this research gives new insights into the use of 159Gd as a theranostic radioisotope, with the potential to be used as a90Y alternative for liver radioembolization.
    Matched MeSH terms: Yttrium Radioisotopes/therapeutic use
  19. Mumtaz M, Lim SL, Khaw CH, Mohd Khir AS
    Malays J Med Sci, 2009 Jan;16(1):25-33.
    PMID: 22589645
    Graves' disease is a common cause of hyperthyroidism. Treatment options for Graves' disease include antithyroid medication, surgery or radioactive iodine (I-31) or RAI. This review will focus on the approach to RAI therapy; discussing dose selection, patient preparation, and consideration before and after administering RAI, examining aspects of pre-treatment with antithyroid medication as well as discussing possible adverse events including hypothyroidism and possible worsening of thyroid-associated opthalmopathy. Follow-up is lifelong with the aim of ensuring the patient remains euthyroid or on replacement therapy if there is evidence of hypothyroidism. While there are controversies in treatment of thyrotoxicosis with RAI, with appropriate patient selection and regular follow-up, radioiodine is a safe and effective modality in achieving high cure rates.
    Matched MeSH terms: Iodine Radioisotopes*
  20. Khandaker MU, Zayadi NSB, Sani SFA, Bradley DA, Osman H, Alzamil Y, et al.
    Radiat Prot Dosimetry, 2023 Nov 02;199(18):2174-2178.
    PMID: 37934995 DOI: 10.1093/rpd/ncad179
    Present study concerns the radiological character of Malaysian honey. A total of 18 samples (representative of the various most common types) were obtained from various honey bee farms throughout the country. Using a high-purity germanium γ-ray spectroscopic system, the samples were analysed for the naturally occurring radionuclides 226Ra, 228Ra and 40K. The respective range of activities (in Bq/kg) was: 3.49 ± 0.35 to 4.51 ± 0.39, 0.99 ± 0.37 to 1.74 ± 0.39 and 41.37 ± 3.26 to 105.02 ± 6.91. The estimated associated committed effective doses were derived from prevailing data on national consumption of honey, the annual dose being found low compared with the UNSCEAR reference dose limit of 290 μSv y-1. The estimated threshold consumption rate for honey indicates a maximum intake of 339 g/d, which poses an insignificant radiological risk to public health; however, the total dietary exposure may not, the guidance level of 290 μSv y-1 being applicable to dietary intake of all foodstuffs. The study is in support of the cultivation of a healthy lifestyle, acknowledging prevailing radioactivity within the environment.
    Matched MeSH terms: Potassium Radioisotopes/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links