PURPOSE: The purpose of this in vitro study was to determine the wetting properties of 3 different commercially available denture base resin materials with artificial salivary substitute by using contact angle measurements and to compare these properties before and after thermocycling.
MATERIAL AND METHODS: A total 120 specimens were fabricated with 3 different denture base materials (n=40): heat-polymerized polymethylmethacrylate (DenTek), injection-molded nylon polyamide (Valplast), and microwave polymerized (VIPI WAVE). The advancing and receding contact angles were measured with a goniometer by using the WinDrop++ software program. The contact angle hysteresis was calculated from the advancing and receding contact angles values. The same specimens were subjected to thermocycling to measure the advancing and receding contact angles values. The comparative evaluation was carried out before and after thermocycling.
RESULTS: The mean ±standard deviation contact angles of the microwave-polymerized material were (62.40 ±1.21 degrees) advancing contact angle, (32.12 ±0.66 degrees) receding contact angle, and (30.28 ±1.40 degrees) contact angle of hysteresis. It was followed by the injection-molded nylon polyamide material, whose mean ±standard deviation contact angle values were (68.57 ±1.72 degrees) advancing contact angle, (43.02 ±1.39 degrees) receding contact angle, (26.27 ±2.05 degrees) contact angle hysteresis and high impact strength heat-polymerized polymethylmethacrylate material, whose mean ±standard deviation contact angle values were (69.81 ±0.16 degrees) advancing contact angle, (41.90 ±1.02 degrees) receding contact angle, and (27.91 ±0.97 degrees) contact angle hysteresis. The statistical analysis showed significant differences among contact angle values of the microwave-polymerized material as compared with the heat-polymerized polymethylmethacrylate and injection-molded nylon polyamide materials (Psaliva substitute than heat-polymerized polymethylmethacrylate and injection-molded nylon polyamide.
METHODS: Tooth wear status of NPC survivors were clinically assessed using the Exact Tooth Wear Index. A tooth was graded to have severe wear when more than one-third of its buccal/occlusal/lingual surface had dentine loss. At the subject-level, percentages of anterior/posterior/all teeth with severe wear were calculated. Age, number of teeth, flow-rate/buffering capacity/pH of stimulated whole (SWS) and parotid (SPS) saliva's were collected. Correlation and multiple-linear regression tests were performed at the significance level α = 0.05.
RESULT: Sixty-eight participants (mean age of 60.0 ± 8.9), 697 anterior and 686 posterior teeth were examined with a mean of 10-years post-radiotherapy. Severe tooth wear was found in 63 (92.6 percent) participants, 288 anterior and 83 posterior teeth. The mean percentage of anterior/posterior/all teeth with severe wear were 42.3 ± 28.1, 14.5 ± 19.9 and 30.0 ± 21.7. Anterior teeth, particularly the incisal surface of central incisors were most affected. The mean flow-rate of SWS and SPS were 0.1 ± 0.1 ml/min and 0.03 ± 0.07 ml/min respectively. Thirty (44.1 percent) and 48 (70.6 percent) participants were found to have low/no buffering capacity of SWS and SPS respectively. Multiple-regression analyses revealed the SWS flow-rate was associated with the percentage of anterior teeth with severe wear (p=0.03).
CONCLUSION: Anterior tooth wear is a significant dental problem among NPC survivors and was associated with hypo-salivation.
CLINICAL SIGNIFICANCE: Patients with hypo-salivation should be being monitored for tooth wear particularly on the anterior teeth.
Materials and methods: Sixty (60) extracted sound Maxilla (Mx) and Mandibular (Mn) premolars were randomly divided into 2 groups (test and control). Artificial WSLs were produced on buccal surface of teeth and were immersed in artificial saliva for 8 weeks. Colour components (L∗, a∗, b∗) and surface roughness (Sa∗) were assessed on 40 teeth using colour difference meter RD-100 and Alicona® Infinite Focus profilometer respectively. The measurements were done at baseline (T1), directly after artificial WSLs (T2), after 24 hours immersed in saliva and application of resin (T3) and immersion in artificial saliva for 1 (T4), 2 (T5), 4 (T6), 6 (T7) and 8 (T8) weeks. SEM images analysis were carried out on 20 teeth in four time points.
Results: The values of L∗ (lightness), b∗ (yellow/blue) and Sa∗ (surface roughness) are gradually reduced to the baseline value. Whereas, the value of a∗ gradually increased with distinct treatment time to achieve the baseline value. The higher value of L∗ and Sa∗, the whiter the lesion suggesting higher degree of enamel demineralization and surface roughness. Lower L∗ values suggest a masking colour effect.
Conclusion: The material produced favorable esthetics on colour and the surface roughness of teeth at distinct treatment times. It is recommended to be used to improve WSL post orthodontic treatment.
METHODS: This was a prospective single center study which recruited 217 asymptomatic adult male participants in a coronavirus disease 2019 (COVID-19) quarantine center who had tested positive for SARS-CoV-2 8-10 days prior to isolation. Paired NPS and saliva specimens were collected and processed within 5 hours of sample collection. Real time reverse transcription polymerase chain reaction (RT-PCR) targeting Envelope (E) and RNA-dependent RNA polymerase (RdRp) genes was performed and the results were compared.
RESULTS: Overall, 160 of the 217 (74%) participants tested positive for COVID-19 based on saliva, NPS, or both testing methods. The detection rate for SARS-CoV-2 was higher in saliva compared to NPS testing (93.1%, 149/160 vs 52.5%, 84/160, P < .001). The concordance between the 2 tests was 45.6% (virus was detected in both saliva and NPS in 73/160), whereas 47.5% were discordant (87/160 tested positive for 1 whereas negative for the other). The cycle threshold (Ct) values for E and RdRp genes were significantly lower in saliva specimens compared to NP swab specimens.
CONCLUSIONS: Our findings demonstrate that saliva is a better alternative specimen for detection of SARS-CoV-2. Taking into consideration, the simplicity of specimen collection, shortage of PPE and the transmissibility of the virus, saliva could enable self-collection for an accurate SARS-CoV-2 surveillance testing.
METHODS: HA having nanorods structure were synthetized using ultrasonication with precipitation method. HA nanorods were characterized by TEM for average-size/shape. Following phosphoric acid demineralization, dentine specimens were treated with HA-nanorods with/without subsequent HIFU exposure for 5 s, 10 s and 20 s then stored in artificial saliva for 1-month. Dentine specimens were characterized using different SEM and Raman spectroscopic techniques. In addition, the biochemical stability and HA-nanorods were examined using ATR-FTIR to observe attachment of nanoparticles. Also, surface nanoindentation properties were evaluated using AFM in tapping-mode.
RESULTS: HA-nanorods displayed well-defined, homogenous plate-like nanostructure. TEM revealed intact collagen-fibrils network structure with high density due to obliteration of interfibrillar spaces with clear evidence of remineralization in combined HA/HIFU treatment. With HA-nanorods treatment collagen-network structure was visible, consisting of fibrils interlaced into a compact pattern with evidence of minerals deposition. AFM investigation revealed clear mineral formation with the increase of HIFU exposure time. Bands associated with inorganic phase dominate well in HIFU exposed specimens with PO stretching within dentine mineral identified at 960 cm-1. Characteristic dentine structure for control and HIFU 20 s specimens is reflected as oscillatory mean Amide-I intensity with measurement giving a precise sinusoidal response of polarization angle β within dentinal tissue. Nanoindentation testing showed a gradual significant increase in elastic-modulus with the increase in HIFU exposure time after 1-month storage. FTIR spectrum of the HIFU exposed dentine displayed bands at 1650 cm-1, 1580 cm-1 and 1510 cm-1 that can be attributed to Amide-I, II and III.
SIGNIFICANCE: The synergetic effect of HIFU exposure on remineralization potential of demineralized dentine-matrix following nano-hydroxyapatite treatment was revealed. This synergetic effect is dependent on HIFU exposure time.
METHODS: We recruited 81 travelers and 15 non-travelers (including ten controls) prospectively within a mean of 3·22 days of RT-PCR confirmed COVID-19. Each study participant provided 2 mls of early morning fresh drooled whole saliva separately into a sterile plastic container and GeneFiX™ saliva collection kit. The saliva specimens were processed within 4 h and tested for SARS-CoV-2 genes (E, RdRP, and N2) and the results compared to paired NPS RT-PCR for diagnostic accuracy.
RESULTS: Majority of travellers were asymptomatic (75·0%) with a mean age of 34·26 years. 77 travelers were RT-PCR positive at the time of hospitalization whilst three travelers had positive contacts. In this group, the detection rate for SARS-CoV-2 with NPS, whole saliva, and GeneFiX™ were comparable (89·3%, 50/56; 87·8%, 43/49; 89·6%, 43/48). Both saliva collection methods were in good agreement (Kappa = 0·69). There was no statistical difference between the detection rates of saliva and NPS (p > 0·05). Detection was highest for the N2 gene whilst the E gene provided the highest viral load (mean = 27·96 to 30·10, SD = 3·14 to 3·85). Saliva specimens have high sensitivity (80·4%) and specificity (90·0%) with a high positive predictive value of 91·8% for SARS-CoV-2 diagnosis.
CONCLUSION: Saliva for SARS-CoV-2 screening is a simple accurate technique comparable with NPS RT-PCR.