Displaying publications 1 - 20 of 83 in total

Abstract:
Sort:
  1. Salim MM, Malek NANN
    PMID: 26652350 DOI: 10.1016/j.msec.2015.09.099
    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550°C, 5h) and this material has excellent performance as an antibacterial agent after silver ions loading.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  2. Ali TH, Hussen RS, Heidelberg T
    Colloids Surf B Biointerfaces, 2014 Nov 1;123:981-5.
    PMID: 25465761 DOI: 10.1016/j.colsurfb.2014.10.054
    A series of sugar-based surfactants, involving a single hydrophobic chain (C12) and two side-by-side arranged head groups, was prepared form simple glucose precursors. All surfactants were highly water soluble and exhibited exclusively micellar assemblies. This behavior makes them interesting candidates for oil in water emulsifiers.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  3. Jaafar SA, Latif MT, Chian CW, Han WS, Wahid NB, Razak IS, et al.
    Mar Pollut Bull, 2014 Jul 15;84(1-2):35-43.
    PMID: 24930738 DOI: 10.1016/j.marpolbul.2014.05.047
    This study was conducted to determine the composition of surfactants in the sea-surface microlayer (SML) and atmospheric aerosol around the southern region of the Peninsular Malaysia. Surfactants in samples taken from the SML and atmospheric aerosol were determined using a colorimetric method, as either methylene blue active substances (MBAS) or disulphine blue active substances (DBAS). Principal component analysis with multiple linear regressions (PCA-MLR), using the anion and major element composition of the aerosol samples, was used to determine possible sources of surfactants in atmospheric aerosol. The results showed that the concentrations of surfactants in the SML and atmospheric aerosol were dominated by anionic surfactants and that surfactants in aerosol were not directly correlated (p>0.05) with surfactants in the SML. Further PCA-MLR from anion and major element concentrations showed that combustion of fossil fuel and sea spray were the major contributors to surfactants in aerosol in the study area.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  4. Sani FA, Heidelberg T, Hashim R, Farhanullah
    Colloids Surf B Biointerfaces, 2012 Sep 1;97:196-200.
    PMID: 22609603 DOI: 10.1016/j.colsurfb.2012.03.030
    A series of glucose based surfactants varying in chain length and anomeric configuration were synthesized and investigated on their surfactant properties. The synthesis applied glycosylation of propargyl alcohol followed by cycloaddition with alkyl azides in CLICK chemistry fashion. This approach enables a homogeneous coupling of hydrophilic unprotected sugars and hydrophobic paraffin components in low molecular weight alcohols without solvent side reactions, as commonly found for APGs. The combination of alcohols as inert medium with practically quantitative coupling of the surfactant domains avoids particularly hydrophobic contaminations of the surfactant, thus providing access to pure surfactants. ATGs with chain lengths up to 12 carbons exhibit Krafft points below room temperature and no cloud points were detected. The values for the CMC of ATGs with 12 carbon alkyl chains and above were in good agreement with those of corresponding alkyl glucosides. However, lower homologues exhibited significantly smaller CMCs, and the trend of the CMC upon the chain length did not match common surfactant behavior. This deviation may be related to the triazole that links the two surfactant domains.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  5. Goyal RK, Jayakumar NS, Hashim MA
    J Hazard Mater, 2011 Nov 15;195:55-61.
    PMID: 21962862 DOI: 10.1016/j.jhazmat.2011.03.024
    This study focuses on the role of a hydrophobic ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMIM](+)[NTf(2)](-) in the preparation of emulsion liquid membrane (ELM) phase containing kerosene as solvent, Span 80 as surfactant, NaOH as internal phase and TOMAC (tri-n-octylmethylammonium chloride) a second ionic liquid as carrier. The first time used [BMIM](+)[NTf(2)](-) in ELM was found to play the role of a stabilizer. The emulsion prepared using [BMIM](+) [NTf(2)](-) has a long period of stability of about 7h (at 3% (w/w) of [BMIM](+)[NTf(2)](-)) which otherwise has a brief stability up to only 7 min. The stability of the emulsion increases with the increase in concentration of [BMIM](+)[NTf(2)](-) up to 3% (w/w). Nevertheless, with further increase in concentration of [BMIM](+)[NTf(2)](-), a reduction in the stability occurs. The extraction experiments were carried out after holding the ELM for 2h after the preparation and a removal efficiency of approximately 80% was obtained for Cr. The destabilization of the emulsion was studied by observing the change in the interface height. An empirical correlation for the stability of the emulsion has been proposed.
    Matched MeSH terms: Surface-Active Agents/chemistry
  6. Ng YS, Jayakumar NS, Hashim MA
    J Hazard Mater, 2010 Dec 15;184(1-3):255-60.
    PMID: 20832168 DOI: 10.1016/j.jhazmat.2010.08.030
    The percentage removal of phenol from aqueous solution by emulsion liquid membrane and emulsion leakage was investigated experimentally for various parameters such as membrane:internal phase ratio, membrane:external phase ratio, emulsification speed, emulsification time, carrier concentration, surfactant concentration and internal agent concentration. These parameters strongly influence the percentage removal of phenol and emulsion leakage. Under optimum membrane properties, the percentage removal of phenol was as high as 98.33%, with emulsion leakage of 1.25%. It was also found that the necessity of carrier for enhancing phenol removal was strongly dependent on the internal agent concentration.
    Matched MeSH terms: Surface-Active Agents/chemistry
  7. Abd Maurad Z, Abdullah LC, Anuar MS, Abdul Karim Shah NN, Idris Z
    Molecules, 2020 Jun 05;25(11).
    PMID: 32516971 DOI: 10.3390/molecules25112629
    Methyl ester sulphonates (MES) have been considered as an alternative green surfactant for the detergent market. Investigation on the purification of methyl ester sulphonates (MES) with various carbon chains of C12, C14, C16 and C16-18 derived from palm methyl ester is of great interest. These MES powders have been repeatedly crystallized with ethanol and the purity of MES has increased to a maximum of 99% active content and 96% crystallinity index without changing the structure. These crystallized MES with high active content have 1.0% to 2.3% moisture content and retained its di-salt content in the range of 5%. The crystallized MES C16 and C16-18 attained excellent flow characteristics. Morphology, structural and its crystallinity analyses showed that the crystals MES had good solubility properties, stable crystal structure (β polymorphic) and triclinic lateral structure when it is in high active content. The brittleness of MES crystals increased from a β' to a β subcell. Crystal with high brittleness has the potential to ease production of powder, which leads to a reduction in the cost of production and improves efficiency.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  8. Islam A, Teo SH, Rahman MA, Taufiq-Yap YH
    PLoS One, 2015;10(12):e0144805.
    PMID: 26700479 DOI: 10.1371/journal.pone.0144805
    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  9. Amid M, Murshid FS, Manap MY, Hussin M
    Biomed Res Int, 2015;2015:815413.
    PMID: 25756051 DOI: 10.1155/2015/815413
    A novel aqueous two-phase system composed of a surfactant and sorbitol was employed for the first time to purify pectinase from Psidium guajava. The influences of different parameters, including the type and concentration of the surfactant and the concentration and composition of the surfactant/sorbitol ratio, on the partitioning behavior and recovery of pectinase were investigated. Moreover, the effects of system pH and the crude load on purification fold and the yield of purified pectinase were studied. The experimental results indicated that the pectinase was partitioned into surfactant-rich top phase, and the impurities were partitioned into the sorbitol-rich bottom phase with the novel method involving an ATPS composed of 26% (w/w) Triton X-100 and 23% (w/w) sorbitol at 54.2% of the TLL crude load of 20% (w/w) at pH 6.0. The enzyme was successfully recovered by this method with a high purification factor of 15.2 and a yield of 98.3%, whereas the phase components were also recovered and recycled at rates above 96%. This study demonstrated that this novel ATPS method can be used as an efficient and economical alternative to the traditional ATPS for the purification and recovery of the valuable enzyme.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  10. Negim el-S, Kozhamzharova L, Khatib J, Bekbayeva L, Williams C
    ScientificWorldJournal, 2014;2014:942978.
    PMID: 24955426 DOI: 10.1155/2014/942978
    The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  11. Mukhopadhyay S, Mohd AH, Sahu JN, Yusoff I, Sen GB
    J Environ Sci (China), 2013 Nov 01;25(11):2247-56.
    PMID: 24552053
    This study explores the possible application of a biodegradable plant based surfactant, obtained from Sapindus mukorossi, for washing low levels of arsenic (As) from an iron (Fe) rich soil. Natural association of As(V) with Fe(III) makes the process difficult. Soapnut solution was compared to anionic surfactant sodium dodecyl sulfate (SDS) in down-flow and a newly introduced suction mode for soil column washing. It was observed that soapnut attained up to 86% efficiency with respect to SDS in removing As. Full factorial design of experiment revealed a very good fit of data. The suction mode generated up to 83 kPa pressure inside column whilst down-flow mode generated a much higher pressure of 214 kPa, thus making the suction mode more efficient. Micellar solubilisation was found to be responsible for As desorption from the soil and it followed 1st order kinetics. Desorption rate coefficient of suction mode was found to be in the range of 0.005 to 0.01, much higher than down-flow mode values. Analysis of the FT-IR data suggested that the soapnut solution did not interact chemically with As, offering an option for reusing the surfactant. Soapnut can be considered as a soil washing agent for removing As even from soil with high Fe content.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  12. Mahdi ES, Sakeena MH, Abdulkarim MF, Abdullah GZ, Sattar MA, Noor AM
    Drug Des Devel Ther, 2011;5:311-23.
    PMID: 21792294 DOI: 10.2147/DDDT.S15698
    The purpose of this study was to select appropriate surfactants or blends of surfactants to study the ternary phase diagram behavior of newly introduced palm kernel oil esters.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  13. Roslan RN, Hanif NM, Othman MR, Azmi WN, Yan XX, Ali MM, et al.
    Mar Pollut Bull, 2010 Sep;60(9):1584-90.
    PMID: 20451220 DOI: 10.1016/j.marpolbul.2010.04.004
    A study was done to determine the concentrations of surfactants on the sea-surface microlayer and in atmospheric aerosols in several coastal areas around the Malaysian peninsula. The concentrations of surfactants from the sea-surface microlayer (collected using rotation drum) and from aerosols (collected using HVS) were analyzed as methylene blue active substances and disulphine blue active substances through the colorimetric method using a UV-vis spectrophotometer. The results of this study showed that the average concentrations of surfactants in the sea-surface microlayer ranged between undetected and 0.36+/-0.34 micromol L(-1) for MBAS and between 0.11+/-0.02 and 0.21+/-0.13 micromol L(-1) for DBAS. The contribution of surfactants from the sea-surface microlayer to the composition of surfactants in atmospheric aerosols appears to be very minimal and more dominant in fine mode aerosols.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  14. Jaafar SA, Latif MT, Razak IS, Shaharudin MZ, Khan MF, Wahid NBA, et al.
    Mar Pollut Bull, 2016 Aug 15;109(1):480-489.
    PMID: 27230987 DOI: 10.1016/j.marpolbul.2016.05.017
    This study determined the effect of monsoonal changes on the composition of atmospheric surfactants in coastal areas. The composition of anions (SO4(2-), NO3(-), Cl(-), F(-)) and the major elements (Ca, K, Mg, Na) in aerosols were used to determine the possible sources of surfactants. Surfactant compositions were determined using a colorimetric method as methylene blue active substances (MBAS) and disulphine blue active substances (DBAS). The anion and major element compositions of the aerosol samples were determined by ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The results indicated that the concentrations of surfactant in aerosols were dominated by MBAS (34-326pmolm(-3)). Monsoonal changes were found to significantly affect the concentration of surfactants. Using principal component analysis-multiple linear regressions (PCA-MLR), major possible sources for surfactants in the aerosols were motor vehicle emissions, secondary aerosol and the combustion of biomass along with marine aerosol.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  15. Salman AA, Tabandeh M, Heidelberg T, Hussen RS, Ali HM
    Carbohydr Res, 2015 Aug 14;412:28-33.
    PMID: 26000863 DOI: 10.1016/j.carres.2015.04.022
    A series of surfactants combining carbohydrate and imidazolium head groups were prepared and investigated on their assembly behavior. The presence of the imidazolium group dominated the interactions of the surfactants, leading to high CMCs and large molecular surface areas, reflected in curved rather than lamellar surfactant assemblies. The carbohydrate, on the other hand, stabilized molecular assemblies slightly and reduced the surface tension of surfactant solutions considerably. A comparative emulsion study discourages the use of pure alkyl imidazolium glycosides owing to reduced assembly stabilities compared with APGs. However, the surfactants are believed to have potential as component in carbohydrate based surfactant mixtures.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  16. Sampath Udeni Gunathilake TM, Ching YC, Chuah CH, Illias HA, Ching KY, Singh R, et al.
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):1055-1064.
    PMID: 30001596 DOI: 10.1016/j.ijbiomac.2018.06.147
    Nanocellulose reinforced chitosan hydrogel was synthesized using chemical crosslinking method for the delivery of curcumin which is a poorly water-soluble drug. Curcumin extracted from the dried rhizomes of Curcuma longa was incorporated to the hydrogel via in situ loading method. A nonionic surfactant (Tween 20) was incorporated into the hydrogel to improve the solubility of curcumin. After the gas foaming process, hydrogel showed large interconnected pore structures. The release studies in gastric medium showed that the cumulative release of curcumin increased from 0.21% ± 0.02% to 54.85% ± 0.77% with the increasing of Tween 20 concentration from 0% to 30% (w/v) after 7.5 h. However, the entrapment efficiency percentage decreased with the addition of Tween 20. The gas foamed hydrogel showed higher initial burst release within the first 120 min compared to hydrogel formed at atmospheric condition. The solubility of curcumin would increase to 3.014 ± 0.041 mg/mL when the Tween 20 concentration increased to 3.2% (w/v) in simulated gastric medium. UV-visible spectra revealed that the drug retained its chemical activity after in vitro release. From these findings, it is believed that the nonionic surfactant incorporated chitosan/nanocellulose hydrogel can provide a platform to overcome current problems associated with curcumin delivery.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  17. Abdi MM, Md Tahir P, Liyana R, Javahershenas R
    Molecules, 2018 Sep 26;23(10).
    PMID: 30261640 DOI: 10.3390/molecules23102470
    In this study a cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as a soft template for in situ chemical polymerization of aniline on the surface of microcrystalline cellulose (MCC). The morphology of the wire-like and porous nanostructure of the resulting composite was highly dependent on the MCC and CTAB concentrations. The effect of the MCC and CTAB concentrations on the electrochemical and morphological properties of the polyaniline (PAni) nanocomposite was studied. Cyclic voltammograms of modified PAni/MCC/CTAB electrode displayed a high current response and the effect of scan rate on the current response confirmed a diffusion controlled process on the surface of the electrode that makes it suitable for sensor applications. The overlapping characteristic peaks of pure PAni and MCC caused peak broadening at 3263 cm-1 in the IR spectra of PAni/MCC/CTAB nanocomposite that revealed the interaction between NH of PAni and OH group of MCC via electrostatic interactions. The addition of MCC to PAni through chemical polymerization decreased the thermal stability of composite compared to pure PAni. Lower crystallinity was observed in the XRD diffractogram, with 2 theta values of 22.8, 16.5, and 34.6 for PAni/MCC, confirming the formation of PAni on the MCC surface.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  18. Tabandeh M, Salman AA, Goh EW, Heidelberg T, Hussen RSD
    Chem Phys Lipids, 2018 05;212:111-119.
    PMID: 29409839 DOI: 10.1016/j.chemphyslip.2018.01.011
    A new synthesis approach towards biantennary lipids of Guerbet glycoside type was developed based on oleic acid as sustainable resource. Functionalization of the double bond provided access to primary alcohols with α-branched C19-skeleton. Formulation studies with corresponding lactosides indicated formation of vesicles with high assembly stability. A relatively narrow bimodal size distribution of the latter, which turns into a narrow unimodal distribution of small vesicles upon addition of an ionic cosurfactant, suggests potential for a vesicular drug delivery system.
    Matched MeSH terms: Surface-Active Agents/chemistry
  19. Bin Sintang MD, Danthine S, Patel AR, Rimaux T, Van De Walle D, Dewettinck K
    J Colloid Interface Sci, 2017 Oct 15;504:387-396.
    PMID: 28586736 DOI: 10.1016/j.jcis.2017.05.114
    In order to modify the self-assembly of sucrose esters (SEs) in sunflower oil, we added sunflower lecithin (SFL) as co-surfactant. It is hypothesized that SFL modifies the self-assembly of SEs by interrupting the extensive hydrogen bonding between SEs monomers. The addition of SFL into SEs induced gelation of the mixed surfactant system oleogels at all studied ratios. The 7:3 SEs:SFL combination showed enhanced rheological properties compared to the other studied ratios, which suggests better molecular ordering induced by SFL. The modifications might have been caused by interference in the hydrogen bonding, connecting the polar heads of SEs molecules in the presence of SFL. This effect was confirmed by thermal behavior and small angle X-ray diffraction (SAXD) analysis. From the crystallization and melting analyses, it was shown that the peak temperature, shape and enthalpy decreased as the SFL ratio increases. Meanwhile, the bi-component oleogels exhibited new peaks in the SAXD profile, which imply a self-assembly modification. The microscopic study through polarized and electrons revealed a change in the structure. Therefore, it can be concluded that a synergistic effect between SEs and SFL, more particularly at 7:3 ratio, towards sunflower oil structuring could be obtained. These findings shed light for greater applications of SEs as structuring and carrier agent in foods and pharmaceutical.
    Matched MeSH terms: Surface-Active Agents/chemistry*
  20. Foo KS, Bavoh CB, Lal B, Mohd Shariff A
    Molecules, 2020 Aug 15;25(16).
    PMID: 32824121 DOI: 10.3390/molecules25163725
    In this study, series of non-ionic surfactants from Span and Tween are evaluated for their ability to affect the viscosity profile of cyclopentane hydrate slurry. The surfactants; Span 20, Span 40, Span 80, Tween 20, Tween 40 and Tween 80 were selected and tested to provide different hydrophilic-hydrophobic balance values and allow evaluation their solubility impact on hydrate formation and growth time. The study was performed by using a HAAKE ViscotesterTM 500 at 2 °C and a surfactant concentration ranging from 0.1 wt%-1 wt%. The solubility characteristic of the non-ionic surfactants changed the hydrate slurry in different ways with surfactants type and varying concentration. The rheological measurement suggested that oil-soluble Span surfactants was generally inhibitive to hydrate formation by extending the hydrate induction time. However, an opposite effect was observed for the Tween surfactants. On the other hand, both Span and Tween demonstrated promoting effect to accelerate hydrate growth time of cyclopentane hydrate formation. The average hydrate crystallization growth time of the blank sample was reduced by 86% and 68% by Tween and Span surfactants at 1 wt%, respectively. The findings in this study are useful to understand the rheological behavior of surfactants in hydrate slurry.
    Matched MeSH terms: Surface-Active Agents/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links