Displaying all 15 publications

Abstract:
Sort:
  1. Wu HT, Lin YT, Chew SH, Wu KJ
    Biomed J, 2023 Feb;46(1):122-133.
    PMID: 35183794 DOI: 10.1016/j.bj.2022.02.002
    BACKGROUND: K63-linked polyubiquitination of proteins have nonproteolytic functions and regulate the activity of many signal transduction pathways. USP7, a HIF1α deubiquitinase, undergoes K63-linked polyubiquitination under hypoxia. K63-polyubiquitinated USP7 serves as a scaffold to anchor HIF1α, CREBBP, the mediator complex, and the super elongation complex to enhance HIF1α-induced gene transcription. However, the physiological role of K63-polyubiquitinated USP7 remains unknown.

    METHODS: Using a Usp7K444R point mutation knock-in mouse strain, we performed immunohistochemistry and standard molecular biological methods to examine the organ defects of liver and kidney in this knock-in mouse strain. Mechanistic studies were performed by using deubiquitination, immunoprecipitation, and quantitative immunoprecipitations (qChIP) assays.

    RESULTS: We observed multiple organ defects, including decreased liver and muscle weight, decreased tibia/fibula length, liver glycogen storage defect, and polycystic kidneys. The underlying mechanisms include the regulation of protein stability and/or modulation of transcriptional activation of several key factors, leading to decreased protein levels of Prr5l, Hnf4α, Cebpα, and Hnf1β. Repression of these crucial factors leads to the organ defects described above.

    CONCLUSIONS: K63-polyubiquitinated Usp7 plays an essential role in the development of multiple organs and illustrates the importance of the process of K63-linked polyubiquitination in regulating critical protein functions.

    Matched MeSH terms: Ubiquitination
  2. Cham KL, Soga T, Parhar IS
    Front Neuroanat, 2018;12:109.
    PMID: 30574074 DOI: 10.3389/fnana.2018.00109
    Serotonin (5-hydroxytryptamine, 5-HT) is one of the major neurotransmitters, modulating diverse behaviours and physiological functions. Really interesting new gene (RING) finger protein 38 (RNF38) is an E3 ubiquitin ligase whose function remains unclear. A recent study has shown a possible regulatory relationship between RNF38 and the 5-HT system. Therefore, to gain insight into the role of RNF38 in the central 5-HT system, we identified the neuroanatomical location of 5-HT positive cells and investigated the relationship between RNF38 and the 5-HT system in the brain of the Nile tilapia, Oreochromis niloticus. Immunocytochemistry revealed three neuronal populations of 5-HT in the brain of tilapia; the paraventricular organ (PVO), the dorsal and ventral periventricular pretectal nuclei (PPd and PPv), and, the superior and inferior raphe (SR and IR). The 5-HT neuronal number was highest in the raphe (90.4 in SR, 284.6 in IR), followed by the pretectal area (22.3 in PPd, 209.8 in PPv). Double-label immunocytochemistry showed that the majority of 5-HT neurons express RNF38 nuclear proteins (66.5% in PPd; 77.9% in PPv; 35.7% in SR; 49.1% in IR). These findings suggest that RNF38 could be involved in E3 ubiquitination in the central 5-HT system.
    Matched MeSH terms: Ubiquitination
  3. Yeo KS, Tan MC, Wong WY, Loh SW, Lam YL, Tan CL, et al.
    Sci Rep, 2016 Sep 27;6:34125.
    PMID: 27671354 DOI: 10.1038/srep34125
    TNF-induced signaling mediates pleiotropic biological consequences including inflammation, immunity, cell proliferation and apoptosis. Misregulation of TNF signaling has been attributed as a major cause of chronic inflammatory diseases and cancer. Jumonji domain-containing protein 8 (JMJD8) belongs to the JmjC family. However, only part of the family members has been described as hydroxylase enzymes that function as histone demethylases. Here, we report that JMJD8 positively regulates TNF-induced NF-κB signaling. Silencing the expression of JMJD8 using RNA interference (RNAi) greatly suppresses TNF-induced expression of several NF-κB-dependent genes. Furthermore, knockdown of JMJD8 expression reduces RIP ubiquitination, IKK kinase activity, delays IκBα degradation and subsequently blocks nuclear translocation of p65. In addition, JMJD8 deficiency enhances TNF-induced apoptosis. Taken together, these findings indicate that JMJD8 functions as a positive regulator of TNF-induced NF-κB signaling.
    Matched MeSH terms: Ubiquitination
  4. Tan KL, Pezzella F
    Oncol Lett, 2016 Dec;12(6):4287-4296.
    PMID: 28101194 DOI: 10.3892/ol.2016.5232
    The capabilities of tumour cells to survive through deregulated cell cycles and evade apoptosis are hallmarks of cancer. The ubiquitin-like proteins (UBL) proteasome system is important in regulating cell cycles via signaling proteins. Deregulation of the proteasomal system can lead to uncontrolled cell proliferation. The Skp, Cullin, F-box containing complex (SCF complex) is the predominant E3 ubiquitin ligase, and has diverse substrates. The ubiquitin ligase activity of the SCF complexes requires the conjugation of neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) to cullin proteins. A tumour suppressor and degrading enzyme named NEDD8 ultimate buster 1 (NUB1) is able to recruit HLA-F-adjacent transcript 10 (FAT10)- and NEDD8-conjugated proteins for proteasomal degradation. Ubiquitination is associated with neddylation and FAT10ylation. Although validating the targets of UBLs, including ubiquitin, NEDD8 and FAT10, is challenging, understanding the biological significance of such substrates is an exciting research prospect. This present review discusses the interplay of these UBLs, as well as highlighting their inhibition through NUB1. Knowledge of the mechanisms by which NUB1 is able to downregulate the ubiquitin cascade via NEDD8 conjugation and the FAT10 pathway is essential. This will provide insights into potential cancer therapy that could be used to selectively suppress cancer growth.
    Matched MeSH terms: Ubiquitination
  5. Ting SY, Ishola OA, Ahmed MA, Tabana YM, Dahham S, Agha MT, et al.
    J Mycol Med, 2017 Mar;27(1):98-108.
    PMID: 28041812 DOI: 10.1016/j.mycmed.2016.12.002
    The virulence of Candida albicans is dependent upon fitness attributes as well as virulence factors. These attributes include robust stress responses and metabolic flexibility. The assimilation of carbon sources is important for growth and essential for the establishment of infections by C. albicans. Previous studies showed that the C. albicans ICL1 genes, which encode the glyoxylate cycle enzymes isocitratelyase are required for growth on non-fermentable carbon sources such as lactate and oleic acid and were repressed by 2% glucose. In contrast to S. cerevsiae, the enzyme CaIcl1 was not destabilised by glucose, resulting with its metabolite remaining at high levels. Further glucose addition has caused CaIcl1 to lose its signal and mechanisms that trigger destabilization in response to glucose. Another purpose of this study was to test the stability of the Icl1 enzyme in response to the dietary sugars, fructose, and galactose. In the present study, the ICL1 mRNAs expression was quantified using Quantitative Real Time PCR, whereby the stability of protein was measured and quantified using Western blot and phosphoimager, and the replacing and cloning of ICL1 ORF by gene recombination and ubiquitin binding was conducted via co-immuno-precipitation. Following an analogous experimental approach, the analysis was repeated using S. cerevisiaeas a control. Both galactose and fructose were found to trigger the degradation of the ICL1 transcript in C. albicans. The Icl1 enzyme was stable following galactose addition but was degraded in response to fructose. C. albicans Icl1 (CaIcl1) was also subjected to fructose-accelerated degradation when expressed in S. cerevisiae, indicating that, although it lacks a ubiquitination site, CaIcl1 is sensitive to fructose-accelerated protein degradation. The addition of an ubiquitination site to CaIcl1 resulted in this enzyme becoming sensitive to galactose-accelerated degradation and increases its rate of degradation in the presence of fructose. It can be concluded that ubiquitin-independent pathways of fructose-accelerated enzyme degradation exist in C. albicans.
    Matched MeSH terms: Ubiquitination/drug effects
  6. Zhou X, Li Y, Wang W, Wang S, Hou J, Zhang A, et al.
    Theranostics, 2020;10(21):9443-9457.
    PMID: 32863938 DOI: 10.7150/thno.46078
    Objective: Esophageal squamous cell carcinoma (ESCC) is one of the most commonly diagnosed cancer types in China. Recent genomic sequencing analysis indicated the over-activation of Hippo/YAP signaling might play important roles for the carcinogenic process and progression for ESCC patients. However, little is known about the molecular mechanisms that controls Hippo signaling activity in ESCC. Our previous studies indicated that PLCE1-an important risk factor for ESCC-linked to ESCC progression through snail signaling, during this period, we found PARK2 was an important downstream target of PLCE1-snail axis. PARK2 was decreased in ESCC human samples, and correlated with good prognosis in ESCC patients. Further research showed that PARK2 could inhibit YAP, which functions as key downstream effectors of the Hippo pathway. Here, we aim to reveal the molecular mechanisms of PARK2 modulated Hippo pathway in ESCC. Methods: To evaluate the function of PARK2 in ESCC, we used a tissue microarray (TMA) of 223 human ESCC patients and immunohistochemistry to analyze the correlation between PARK2 expression and clinicopathologic variables. Depletion of endogenous PARK2 and YAP from ESCC cells using CRISPR/Cas9 technologies. Flow cytometry and EdU cell proliferation assay were used to detect proliferation of ESCC cells. Nude mice subcutaneous injection and Ki-67 staining were used to evaluate tumor growth in vivo. Migration and invasion assays were performed. In addition, lung metastasis models in mice were used to validate the function of PARK2 in vivo. Identification of PARK2 involved in hippo pathway was achieved by expression microarray screening, double immunofluorescence staining and co-immunoprecipitation assays. The RNA-seq analysis results were validated through quantitative real-time PCR (qRT-PCR) analysis. The protein half-life of YAP was analyzed by Cycloheximide assay, and the TEAD activity was detected by Luciferase reporter assays. Results: Clinical sample of ESCC revealed that low PARK2 expression correlated with late tumor stage (P < 0.001), poor differentiation (P < 0.04), lymph node (P < 0.001) and distant metastasis (P = 0.0087). Multivariate Cox proportional regression analysis further revealed that PARK2 expression (P = 0.032) is an independent prognostic factor for the overall survival of ESCC patients. Besides, the immunohistochemistry results showed that PARK2 negatively correlated with YAP protein level (P < 0.001). PARK2 depletion promotes ESCC progression both through Hippo/YAP axis, while PARK2 overexpression suppresses ESCC tumor progression by Hippo signaling. Co-IP and ubiquitination assays revealed that PARK2 could interact with YAP in the cytosol and promotes YAP K48-linked ubiquitination at K90 sites. Conclusion: Clinical sample analysis and mechanistic study have validated PARK2 as a tumor suppressor for ESCC. Multivariate Cox proportional regression analysis further revealed that PARK2 is an independent prognostic factor for the overall survival of ESCC patients. Cellular and molecular mechanisms in this study showed that PARK2 associated with YAP protein in the cytosol, promoted YAP ubiquitination and proteasome-dependent degradation in ESCC cells. Therefore, as a novel modulator for Hippo signaling, modulation of PARK2 activity or gene expression level could be an appealing strategy to treat esophageal.
    Matched MeSH terms: Ubiquitination/genetics
  7. Yuniati L, Lauriola A, Gerritsen M, Abreu S, Ni E, Tesoriero C, et al.
    Cell Rep, 2020 05 19;31(7):107664.
    PMID: 32433973 DOI: 10.1016/j.celrep.2020.107664
    Cullin-RING ligases (CRLs) control key cellular processes by promoting ubiquitylation of a multitude of soluble cytosolic and nuclear proteins. Subsets of CRL complexes are recruited and activated locally at cellular membranes; however, few CRL functions and substrates at these distinct cellular compartments are known. Here, we use a proteomic screen to identify proteins that are ubiquitylated at cellular membranes and found that Lunapark, an endoplasmic reticulum (ER)-shaping protein localized to ER three-way junctions, is ubiquitylated by the CRL3KLHL12 ubiquitin ligase. We demonstrate that Lunapark interacts with mechanistic target of rapamycin complex-1 (mTORC1), a central cellular regulator that coordinates growth and metabolism with environmental conditions. We show that mTORC1 binds Lunapark specifically at three-way junctions, and lysosomes, where mTORC1 is activated, make contact with three-way junctions where Lunapark resides. Inhibition of Lunapark ubiquitylation results in neurodevelopmental defects indicating that KLHL12-dependent ubiquitylation of Lunapark is required for normal growth and development.
    Matched MeSH terms: Ubiquitination
  8. Zhou C, Yu T, Zhu R, Lu J, Ouyang X, Zhang Z, et al.
    Int J Biol Sci, 2023;19(5):1471-1489.
    PMID: 37056925 DOI: 10.7150/ijbs.77979
    Timosaponin AIII (Tim-AIII), a steroid saponin, exhibits strong anticancer activity in a variety of cancers, especially breast cancer and liver cancer. However, the underlying mechanism of the effects of Tim-AIII-mediated anti-lung cancer effects remain obscure. In this study, we showed that Tim-AIII suppressed cell proliferation and migration, induced G2/M phase arrest and ultimately triggered cell death of non-small cell lung cancer (NSCLC) cell lines accompanied by the release of reactive oxygen species (ROS) and iron accumulation, malondialdehyde (MDA) production, and glutathione (GSH) depletion. Interestingly, we found that Tim-AIII-mediated cell death was reversed by ferroptosis inhibitor ferrostatin-1 (Fer-1). Meanwhile, the heat shock protein 90 (HSP90) was predicted and verified as the direct binding target of Tim-AIII by SwissTargetPrediction (STP) and surface plasmon resonance (SPR) assay. Further study showed that Tim-AIII promoted HSP90 expression and Tim-AIII induced cell death was blocked by the HSP90 inhibitor tanespimycin, indicating that HSP90 was the main target of Tim-AIII to further trigger intracellular events. Mechanical analysis revealed that the Tim-AIII-HSP90 complex further targeted and degraded glutathione peroxidase 4 (GPX4), and promoted the ubiquitination of GPX4, as shown by an immunoprecipitation, degradation and in vitro ubiquitination assay. In addition, Tim-AIII inhibited cell proliferation, induced cell death, led to ROS and iron accumulation, MDA production, GSH depletion, as well as GPX4 ubiquitination and degradation, were markedly abrogated when HSP90 was knockdown by HSP90-shRNA transfection. Importantly, Tim-AIII also showed a strong capacity of preventing tumor growth by promoting ferroptosis in a subcutaneous xenograft tumor model, whether C57BL/6J or BALB/c-nu/nu nude mice. Together, HSP90 was identified as a new target of Tim-AIII. Tim-AIII, by binding and forming a complex with HSP90, further targeted and degraded GPX4, ultimately induced ferroptosis in NSCLC. These findings provided solid evidence that Tim-AIII can serve as a potential candidate for NSCLC treatment.
    Matched MeSH terms: Ubiquitination
  9. Rasool M, Malik A, Qureshi MS, Manan A, Pushparaj PN, Asif M, et al.
    PMID: 24864161 DOI: 10.1155/2014/979730
    Neurodegenerative diseases are characterized by protein aggregates and inflammation as well as oxidative stress in the central nervous system (CNS). Multiple biological processes are linked to neurodegenerative diseases such as depletion or insufficient synthesis of neurotransmitters, oxidative stress, abnormal ubiquitination. Furthermore, damaging of blood brain barrier (BBB) in the CNS also leads to various CNS-related diseases. Even though synthetic drugs are used for the management of Alzheimer's disease, Parkinson's disease, autism, and many other chronic illnesses, they are not without side effects. The attentions of researchers have been inclined towards the phytochemicals, many of which have minimal side effects. Phytochemicals are promising therapeutic agents because many phytochemicals have anti-inflammatory, antioxidative as well as anticholinesterase activities. Various drugs of either synthetic or natural origin applied in the treatment of brain disorders need to cross the BBB before they can be used. This paper covers various researches related to phytochemicals used in the management of neurodegenerative disorders.
    Matched MeSH terms: Ubiquitination
  10. Ooi LC, Watanabe N, Futamura Y, Sulaiman SF, Darah I, Osada H
    Cancer Sci, 2013 Nov;104(11):1461-7.
    PMID: 23910095 DOI: 10.1111/cas.12246
    Dysregulation of p27(Kip1) due to proteolysis that involves the ubiquitin ligase (SCF) complex with S-phase kinase-associated protein 2 (Skp2) as the substrate-recognition component (SCF(Skp2)) frequently results in tumorigenesis. In this report, we developed a high-throughput screening system to identify small-molecule inhibitors of p27(Kip1) degradation. This system was established by tagging Skp2 with fluorescent monomeric Azami Green (mAG) and CDK subunit 1 (Cks1) (mAGSkp2-Cks1) to bind to p27(Kip1) phosphopeptides. We identified two compounds that inhibited the interaction between mAGSkp2-Cks1 and p27(Kip1): linichlorin A and gentian violet. Further studies have shown that the compounds inhibit the ubiquitination of p27(Kip1) in vitro as well as p27(Kip1) degradation in HeLa cells. Notably, both compounds exhibited preferential antiproliferative activity against HeLa and tsFT210 cells compared with NIH3T3 cells and delayed the G1 phase progression in tsFT210 cells. Our approach indicates a potential strategy for restoring p27(Kip1) levels in human cancers.
    Matched MeSH terms: Ubiquitination/drug effects*
  11. Nailwal H, Sharma S, Mayank AK, Lal SK
    Cell Death Dis, 2015 May 21;6:e1768.
    PMID: 25996295 DOI: 10.1038/cddis.2015.131
    The interplay between influenza virus and host factors to support the viral life cycle is well documented. Influenza A virus (IAV) proteins interact with an array of cellular proteins and hijack host pathways which are at the helm of cellular responses to facilitate virus invasion. The multifaceted nature of the ubiquitination pathway for protein regulation makes it a vulnerable target of many viruses including IAV. To this end we conducted a yeast two-hybrid screen to search for cellular ubiquitin ligases important for influenza virus replication. We identified host protein, RING finger protein 43 (RNF43), a RING-type E3 ubiquitin ligase, as a novel interactor of nucleoprotein (NP) of IAV and an essential partner to induce NP-driven p53-mediated apoptosis in IAV-infected cells. In this study, we demonstrate that IAV leads to attenuation of RNF43 transcripts and hence its respective protein levels in the cellular milieu whereas in RNF43 depleted cells, viral replication was escalated several folds. Moreover, RNF43 polyubiquitinates p53 which further leads to its destabilization resulting in a decrease in induction of the p53 apoptotic pathway, a hitherto unknown process targeted by NP for p53 stabilization and accumulation. Collectively, these results conclude that NP targets RNF43 to modulate p53 ubiquitination levels and hence causes p53 stabilization which is conducive to an enhanced apoptosis level in the host cells. In conclusion, our study unravels a novel strategy adopted by IAV for utilizing the much conserved ubiquitin proteasomal pathway.
    Matched MeSH terms: Ubiquitination/drug effects
  12. Ooi KK, Yeo CI, Ang KP, Akim AM, Cheah YK, Halim SN, et al.
    J Biol Inorg Chem, 2015 Jul;20(5):855-73.
    PMID: 26003312 DOI: 10.1007/s00775-015-1271-5
    The phosphanegold(I) carbonimidothioates, Ph3PAu{SC(OR)=NC6H4Me-4} for R = Me (1), Et (2) and iPr (3), feature linear P-Au-S coordination geometries and exhibit potent in vitro cytotoxicity against HT-29 colon cancer cells in both monolayer and multi-cellular spheroid models (e.g., IC50 = 11.9 ± 0.4 and 20.3 ± 0.3 μM for 2, respectively). Both intrinsic and extrinsic pathways of apoptosis are demonstrated by human apoptosis PCR array analysis, caspase activities, DNA fragmentation and cell apoptotic assays. Compounds 1-3 induce an extrinsic pathway that leads to down-regulation of NFκB. Compound 2 also exhibits an extrinsic apoptotic pathway involving the activation of both p53 and p73, whereas 3 activates p53 only. Lys48- and Lys63-linked polyubiquitination are also promoted by 1-3. Each of cytotoxic Ph3PAu{SC(OR)=NC6H4Me-4}, for R = Me (1), Et (2) and iPr (3), induce an intrinsic apoptotic pathway as well as an extrinsic pathway leading to down-regulation of NFκB. Lys48- and Lys63-linked polyubiquitination are promoted by 1-3 and these are able to inhibit cell invasion and to suppress the activity of TrxR.
    Matched MeSH terms: Ubiquitination/drug effects*
  13. Fisol AFBC, Saidi NB, Al-Obaidi JR, Lamasudin DU, Atan S, Razali N, et al.
    Microb Ecol, 2021 Apr 22.
    PMID: 33890145 DOI: 10.1007/s00248-021-01757-0
    Rigidoporus microporus is the fungus accountable for the white root rot disease that is detrimental to the rubber tree, Hevea brasiliensis. The pathogenicity mechanism of R. microporus and the identity of the fungal proteins and metabolites involved during the infection process remain unclear. In this study, the protein and metabolite profiles of two R. microporus isolates, Segamat (SEG) and Ayer Molek (AM), were investigated during an in vitro interaction with H. brasiliensis. The isolates were used to inoculate H. brasiliensis clone RRIM 2025, and mycelia adhering to the roots of the plant were collected for analysis. Transmission electron microscope (TEM) images acquired confirms the hyphae attachment and colonization of the mycelia on the root of the H. brasiliensis clones after 4 days of inoculation. The protein samples were subjected to 2-DE analysis and analyzed using MALDI-ToF MS/MS, while the metabolites were extracted using methanol and analyzed using LC/MS-QTOF. Based on the differential analyses, upregulation of proteins that are essential for fungal evolution such as malate dehydrogenase, fructose 1,6-biphosphate aldolase, and glyceraldehyde-3-phosphate dehydrogenase hints an indirect role in fungal pathogenicity, while metabolomic analysis suggests an increase in acidic compounds which may lead to increased cell wall degrading enzyme activity. Bioinformatics analyses revealed that the carbohydrate and amino acid metabolisms were prominently affected in response to the fungal pathogenicity. In addition to that, other pathways that were significantly affected include "Protein Ubiquitination Pathway," Unfolded Protein Response," "HIFα Signaling," and "Sirtuin Signaling Pathway." The identification of responsive proteins and metabolites from this study promotes a better understanding of mechanisms underlying R. microporus pathogenesis and provides a list of potential biological markers for early recognition of the white root rot disease.
    Matched MeSH terms: Ubiquitination
  14. Lim CC, Chan SK, Lim YY, Ishikawa Y, Choong YS, Nagaoka Y, et al.
    Mol Immunol, 2021 07;135:191-203.
    PMID: 33930714 DOI: 10.1016/j.molimm.2021.04.016
    The murine double minute 2 (MDM2) protein is a major negative regulator of the tumour suppressor protein p53. Under normal conditions, MDM2 constantly binds to p53 transactivation domain and/or ubiquinates p53 via its role as E3 ubiquitin ligase to promote p53 degradation as well as nuclear export to maintain p53 levels in cells. Meanwhile, amplification of MDM2 and appearance of MDM2 spliced variants occur in many tumours and normal tissues making it a prognostic indicator for human cancers. The mutation or deletion of p53 protein in half of human cancers inactivates its tumour suppressor activity. However, cancers with wild type p53 have its function effectively inhibited through direct interaction with MDM2 oncoprotein. Here, we described the construction of a MDM2 spliced variant (rMDM215kDa) consisting of SWIB/MDM2 domain and its central region for antibody generation. Biopanning with a human naïve scFv library generated four scFv clones specific to rMDM215kDa. Additionally, the selected scFv clones were able to bind to the recombinant full length MDM2 (rMDM2-FL). Computational prediction showed that the selected scFv clones potentially bind to exon 7-8 of MDM2 while leaving the MDM2/SWIB domain free for p53 interaction. The developed antibodies exhibit good specificity can be further investigated for downstream biomedical and research applications.
    Matched MeSH terms: Ubiquitination
  15. Stebbing J, Zhang H, Xu Y, Lit LC, Green AR, Grothey A, et al.
    Oncogene, 2015 Apr 16;34(16):2103-14.
    PMID: 24909178 DOI: 10.1038/onc.2014.129
    Kinase suppressor of Ras-1 (KSR1) facilitates signal transduction in Ras-dependent cancers, including pancreatic and lung carcinomas but its role in breast cancer has not been well studied. Here, we demonstrate for the first time it functions as a tumor suppressor in breast cancer in contrast to data in other tumors. Breast cancer patients (n>1000) with high KSR1 showed better disease-free and overall survival, results also supported by Oncomine analyses, microarray data (n=2878) and genomic data from paired tumor and cell-free DNA samples revealing loss of heterozygosity. KSR1 expression is associated with high breast cancer 1, early onset (BRCA1), high BRCA1-associated ring domain 1 (BARD1) and checkpoint kinase 1 (Chk1) levels. Phospho-profiling of major components of the canonical Ras-RAF-mitogen-activated protein kinases pathway showed no significant changes after KSR1 overexpression or silencing. Moreover, KSR1 stably transfected cells formed fewer and smaller size colonies compared to the parental ones, while in vivo mouse model also demonstrated that the growth of xenograft tumors overexpressing KSR1 was inhibited. The tumor suppressive action of KSR1 is BRCA1 dependent shown by 3D-matrigel and soft agar assays. KSR1 stabilizes BRCA1 protein levels by reducing BRCA1 ubiquitination through increasing BARD1 abundance. These data link these proteins in a continuum with clinical relevance and position KSR1 in the major oncoprotein pathways in breast tumorigenesis.
    Matched MeSH terms: Ubiquitination
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links