MATERIALS AND METHODS: Rhesus macaque choroid retinal endothelial cell line (RF/6A) cells were cultivated in normal glucose (NG) and high glucose (HG) conditions. The mRNA expression of miR-424 and Cyclin D1 (CCND1) was quantified using qPCR, and the protein quantity of CCND1 was detected using Western Blot. miR-424 mimics, miR-424 inhibitors, miR-424 inhibitor+ siRNA-CCND1 or vehicle molecules were transfected into RF/6A cells. MTT test was used to assess cell proliferation, and flow cytometric analysis was used to assess cell cycle. The interaction between miR-424 and CCND1 was predicted using bioinformatics and validated using dual luciferase reporter analysis.
RESULTS: miR-424 was up-regulated, and cell viability was reduced in HG compared to NG. By reversing the expression of miR-424 in certain situations, the phenotypes can be changed. CCND1 has been identified as a miR-424 target gene, and it may be regulated at the transcriptional and translational levels. Manipulation of silencing CCND1 can counteract the effect of transfecting miR-424 inhibitor into RF/6A cells under HG such as proliferation stimulation.
CONCLUSIONS: Our findings indicate that miR-424 plays an important role in hyperglycemia induced ARPE-19 cells damage, and it could be a new therapeutic target for DR by preventing retinal vascular cells from HG-induced injury.
Results: The fusion index and myotube surface area were higher (p
METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period.
RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05). The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05), indicating cell proliferation.
CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.
MATERIALS AND METHODS: TGBII was performed in male Wistar rats (3 to 5 months, 150 to 300 g) which underwent bilateral common carotid artery occlusion (BCCAO) for 20 minutes, then reperfused for 10 days (BCCAO group, n = 6). Two groups of BCCAO were treated with intraperitoneal injection of calcitriol 0.125 μg/kgBW (VD1 group) and 0.5 μg/kgBW (VD2 group). The spatial memory function was tested using a probe test with Morris water maze (MWM). mRNA expression of BAX and SOD2 were assessed by the RT-PCR method. Meanwhile, immunohistochemical staining was used for identification of SOD2 protein. Statistical analysis is tested using one-way ANOVA followed by post-hoc LSD.
RESULTS: MWM showed a shorter duration in target quadrant of BCCAO group than the SO group, which is associated with BAX upregulation and SOD2 downregulation. The VDtreated groups had longer duration probe test compared to BCCAO. Furthermore, VD-treated groups had a longer duration in probe test with lower mRNA expression of BAX and higher expression of SOD2. However, there was no significant difference in VD1 and VD2. Immunostaining showed a reduced SOD2 signal in pyramidal cell of CA1 area in BCCAO group and ameliorated in VD1 and VD2 groups.
CONCLUSION: Vitamin D ameliorates memory function and attenuates oxidative stress and apoptosis in the TGBII model.