METHODS: A user-friendly software was developed to accurately predict the individual size-specific dose estimation of paediatric patients undergoing computed tomography (CT) scans of the head, thorax, and abdomen. The software includes a calculation equation developed based on a novel SSDE prediction equation that used a population's pre-determined percentage difference between volume-weighted computed tomography dose index (CTDIvol) and SSDE with age. American Association of Physicists in Medicine (AAPM RPT 204) method (manual) and segmentation-based SSDE calculators (indoseCT and XXautocalc) were used to assess the proposed software predictions comparatively.
RESULTS: The results of this study show that the automated equation-based calculation of SSDE and the manual and segmentation-based calculation of SSDE are in good agreement for patients. The differences between the automated equation-based calculation of SSDE and the manual and segmentation-based calculation are less than 3%.
CONCLUSION: This study validated an accurate SSDE calculator that allows users to enter key input values and calculate SSDE.
IMPLICATION FOR PRACTICE: The automated equation-based SSDE software (PESSD) seems a promising tool for estimating individualised CT doses during CT scans.
METHODS: 220 patients underwent CT of the chest, abdomen and pelvis (CAP) using a standard FV protocol, and subsequently, a customised 1.0 mL/kg WBV protocol within one year. Both image sets were assessed for contrast enhancement using CT attenuation at selected regions-of-interest (ROIs). The visual image quality was evaluated by three radiologists using a 4-point Likert scale. Quantitative CT attenuation was correlated with the visual quality assessment to determine the HU's enhancement indicative of the image quality grades. Contrast media usage was calculated to estimate cost-savings from both protocols.
RESULTS: Mean patient age was 61 ± 14 years, and weight was 56.1 ± 8.7 kg. FV protocol produced higher contrast enhancement than WBV, p