Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Chua LYW, Chua BL, Figiel A, Chong CH, Wojdyło A, Szumny A, et al.
    Molecules, 2019 04 09;24(7).
    PMID: 30970652 DOI: 10.3390/molecules24071397
    The preservation of active constituents in fresh herbs is affected by drying methods. An effective drying method for Strobilanthes crispus which is increasingly marketed as an important herbal tea remains to be reported. This study evaluated the effects of conventional and new drying technologies, namely vacuum microwave drying methods, on the antioxidant activity and yield of essential oil volatiles and phytosterols. These drying methods included convective drying (CD) at 40 °C, 50 °C, and 60 °C; vacuum microwave drying (VMD) at 6, 9, and 12 W/g; convective pre-drying and vacuum microwave finish drying (CPD-VMFD) at 50 °C and 9 W/g; and freeze-drying (FD). GC–MS revealed 33 volatiles, and 2-hexen-1-ol, 2-hexenal, 1-octen-3-ol, linalool, and benzaldehyde were major constituents. The compounds β-sitosterol and α-linolenic acid were the most abundant phytosterol and fatty acid, respectively, in fresh S. crispus. The highest phenolic content was achieved with CD at 60 °C. The highest antioxidant activity was obtained with CD at 40 °C and VMD at 9 W/g. On the contrary, the highest total volatiles and phytosterols were detected with CD at 50 °C and VMD at 9 W/g, respectively. This study showed that CD and VMD were effective in producing highly bioactive S. crispus. A suitable drying parameter level, irrespective of the drying method used, was an important influencing factor.
    Matched MeSH terms: Acanthaceae/chemistry*
  2. Afzal K, Uzair M, Chaudhary BA, Ahmad A, Afzal S, Saadullah M
    Acta Pol Pharm, 2015 Sep-Oct;72(5):821-7.
    PMID: 26665388
    Ruellia is a genus of flowering plants commonly known as Ruellias or Wild Petunias which belongs to the family Acanthaceae. It contains about 250 genera and 2500 species. Most of these are shrubs, or twining vines; some are epiphytes. Only a few species are distributed in temperate regions. They are distributed in Indonesia and Malaysia, Africa, Brazil, Central America and Pakistan. Some of these are used as medicinal plants. Many species of the genus has antinociceptive, antioxidant, analgesic, antispasmolytic, antiulcer, antidiabetic and anti-inflammatory properties. The phytochemicals constituents: glycosides, alkaloids, flavonoids and triterpenoids are present. The genus has been traditionally claimed to be used for the treatment of flu, asthma, fever, bronchitis, high blood pressure, eczema, and diabetes. The objective of this review article is to summarize all the pharmacological and phytochemical evaluations or investigations to find area of gap and endorse this genus a step towards commercial drug. Hence, further work required is to isolate and characterize the active compounds responsible for these activities in this plant and bring this genus plants to commercial health market to serve community with their potential benefits.
    Matched MeSH terms: Acanthaceae/chemistry*
  3. Dirar AI, Adhikari-Devkota A, Kunwar RM, Paudel KR, Belwal T, Gupta G, et al.
    J Ethnopharmacol, 2021 Jan 30;265:113255.
    PMID: 32798615 DOI: 10.1016/j.jep.2020.113255
    ETHNOPHARMACOLOGICAL RELEVANCE: Blepharis is an Afro-Asiatic genus belonging to the family Acanthaceae. It comprises about 126 species that occur in arid and semi-arid habitats. Some species of Blepharis are used in traditional medicines in different countries mainly for their anti-inflammatory, wound healing activities along with treatment of gastrointestinal disorders and bone fractures.

    AIM OF THE REVIEW: The present review aims to collate and analyze the available data and information on distribution, traditional uses, chemical constituents and pharmacological activities of Blepharis.

    METHODS: Scientific information of genus Blepharis was retrieved from the online bibliographic databases such as MEDLINE/PubMed, SciFinder, Web of Science and Google Scholar and secondary resources including books and proceedings.

    RESULTS: Seven species of Blepharis were found to be reported frequently as useful in folklore in African and Asian countries. B. maderaspatensis was found to be widely used in Indian traditional medicines whereas the B. ciliaris and B. edulis were common in folklore of Egypt, Jordan, and Arabia. Active phytochemicals of Blepharis are flavonoids from B. ciliaris, alkaloids from B. sindica, phenolic acid derivatives, and phytosterols, and derivatives of hydroxamic acids from B. edulis resulted in possessing diverse biological properties such as anti-microbial, anti-inflammatory, and anti-cancer.

    CONCLUSIONS: Various species of Blepharis were found to be used in traditional medicine systems in African and Asian countries. Few of these species were studied for their bioactive chemical constituents however the activity guided isolation studies are not performed. Similarly, detailed pharmacological studies in animal models to explore their mechanism of action are also not reported. Future studies should focus on these aspects related to the medicinally used species of Blepharis. The detailed and comprehensive comparative analysis presented here gives valuable information of the currently used Blepharis species and pave the way to investigate other useful species of Blepharis pertaining to ethnobotany, phytochemistry and discovery of new drugs.

    Matched MeSH terms: Acanthaceae/chemistry*
  4. Huang D, Li Y, Cui F, Chen J, Sun J
    Carbohydr Polym, 2016 Feb 10;137:701-708.
    PMID: 26686182 DOI: 10.1016/j.carbpol.2015.10.102
    A novel polysaccharide-peptide complex CNP-1-2 with molecular weight of 9.17 × 10(4) Da was obtained from Clinacanthus nutans Lindau leaves by hot water extraction, ethanol precipitation, and purification with Superdex 200 and DEAE-Sepharose Fast Flow column chromatography. CNP-1-2 exhibited the highest growth inhibitory effect on human gastric cancer cells SGC-7901 with inhibition ratio of 92.34% and stimulated activation of macrophages with NO secretion level of 47.53 μmol/L among the polysaccharide fractions. CNP-1-2 comprised approximately 87.25% carbohydrate and 9.37% protein. Monosaccharide analysis suggested that CNP-1-2 was composed of L-rhamnose, l-arabinose, D-mannose, D-glucose and D-galactose with a molar ratio of 1.30:1.00:2.56:4.95:5.09. Methylation analysis, FT-IR, and (1)H NMR spectroscopy analysis revealed that CNP-1-2 might have a backbone consisting of 1,4-linked Glcp, 1,3-linked Glcp, 1,3-linked Manp, 1,4-linked Galp, 1,2,6-linked Galp and 1,2,6-linked Galp. Its side chain might be composed of 1-linked Araf, 1,6-linked Galp and 1-linked Rhap residues. AFM (atomic force micrograph) analysis revealed that CNP-1-2 had the molecular aggregation along with branched and entangled structure.
    Matched MeSH terms: Acanthaceae/chemistry*
  5. Oh HKF, Siow LF, Lim YY
    J Food Biochem, 2019 07;43(7):e12856.
    PMID: 31353691 DOI: 10.1111/jfbc.12856
    Different drying methods and blanching were investigated as to their effects on antioxidant and oxidase activities of Thunbergia laurifolia leaves. Results showed that oven-drying had the highest degradation of total phenolic content (TPC) and antioxidant activity at >85%, while freeze-drying had the lowest at <20%. However, inactivation of oxidase enzymes by blanching at 100°C resulted in a lesser decrease in TPC for oven-drying at 50 and 100°C (51% and 65%, respectively), indicating the importance of inactivating the oxidase enzymes for lower degradation of phenolics on drying. The high-performance liquid chromatography analysis showed that its major antioxidant, rosmarinic acid, degraded tremendously in the presence of oxidase enzymes, but only degraded slightly upon inactivation of oxidase enzymes. Hence, this work showed that by controlling the enzymatic activity, the preservation of phenolics with specific bioactivity in herbal tea leaves can be achieved. PRACTICAL APPLICATIONS: Thunbergia laurifolia leaves have been frequently consumed in the form of a tea or pill due to its medicinal properties. Processing of fresh herbal plant leaves by drying is required to preserve antioxidant phenolic compounds and quality of the plant leaves. Although the drying effects on the antioxidant properties have been studied, the factors that cause the change in properties have not been investigated in-depth. Controlling the factors that affect the phenolic content can help to preserve the beneficial antioxidants when processing the leaves by drying. The result of this study will be of relevance and beneficial to the herbal tea industry.
    Matched MeSH terms: Acanthaceae/chemistry*
  6. Haron NH, Md Toha Z, Abas R, Hamdan MR, Azman N, Khairuddean M, et al.
    Asian Pac J Cancer Prev, 2019 Feb 26;20(2):601-609.
    PMID: 30806066
    Objective: This study was conducted to investigate the antiproliferative activity of extracts of Clinacanthus nutans
    leaves against human cervical cancer (HeLa) cells. Methods: C. nutans leaves were subjected to extraction using 80%
    methanol or water. The methanol extract was further extracted to obtain hexane, dichloromethane (DCM), and aqueous
    fractions. The antiproliferative activity of the extracts against HeLa cells was determined. The most cytotoxic extract
    was furthered analyzed by apoptosis and cell cycle assays, and the phytochemical constituents were screened by gas
    chromatography-mass spectrometry (GC-MS). Results: All of the extracts were antiproliferative against HeLa cells, and
    the DCM fraction had the lowest IC50 value of 70 μg/mL at 48 h. Microscopic studies showed that HeLa cells exposed
    to the DCM fraction exhibited marked morphological features of apoptosis. The flow cytometry study also confirmed
    that the DCM fraction induced apoptosis in HeLa cells, with cell cycle arrest at the S phase. GC-MS analysis revealed
    the presence of at least 28 compounds in the DCM fraction, most of which were fatty acids. Conclusion: The DCM
    fraction obtained using the extraction method described herein had a lower IC50 value than those reported in previous
    studies that characterized the anticancer activity of C. nutans against HeLa cells.
    Matched MeSH terms: Acanthaceae/chemistry*
  7. Ilori NTO, Liew CX, Fang CM
    Mol Biol Rep, 2020 Dec;47(12):9883-9894.
    PMID: 33244664 DOI: 10.1007/s11033-020-06025-x
    This appraisal is comprised of the inflammatory studies that have been conducted on Clinacanthus nutans, Acanthus ebracteatus, and Barleria lupulina. The review aims to provide a comprehensive evaluation of the supporting and contradictory evidence on each plants' anti-inflammatory properties, whilst addressing the gaps in the current literature. The databases used to obtain relevant studies were Google Scholar, ResearchGate, PubMed and Nusearch (University of Nottingham). A total of 13 articles were selected for this review. A. ebracteatus was found to suppress neutrophil migration and weakly inhibits chronic inflammatory cytokines. Furthermore, B. lupulina and C. nutans were shown to possess very similar anti-inflammatory properties. The studies on C. nutans indicated that its anti-inflammatory effect is strongly related to the inhibition of toll-like receptor 4 (TLR4). Moreover, several phytoconstituents isolated from B. lupulina were shown to activate the anti-inflammatory Nrf2 pathway. Overall, all the studies have provided evidence to support the use of these plants as anti-inflammatory herbal remedies. However, their exact mechanism of action and the responsible phytoconstituents are yet to be established.
    Matched MeSH terms: Acanthaceae/chemistry*
  8. Fong SY, Piva T, Dekiwadia C, Urban S, Huynh T
    BMC Complement Altern Med, 2016 Sep 20;16:368.
    PMID: 27646974 DOI: 10.1186/s12906-016-1348-x
    Clinacanthus nutans (Burm. f.) Lindau leaves are widely used by cancer patients and the leaf extracts possess cytotoxic and antiproliferative effects on several human cancer cell lines. However, the effect of C. nutans leaf extract on human melanoma, which is the least common but most fatal form of skin cancer and one of the most common cancers diagnosed in both sexes worldwide, is unknown. There is also limited information on whether the bioactivity of extracts differs between C. nutans leaves grown in different geographical locations with varying environmental conditions.
    Matched MeSH terms: Acanthaceae/chemistry*
  9. Fazil FN, Azzimi NS, Yahaya BH, Kamalaldin NA, Zubairi SI
    ScientificWorldJournal, 2016;2016:7370536.
    PMID: 28105464 DOI: 10.1155/2016/7370536
    Clinacanthus nutans is widely grown in tropical Asia and locally known "belalai gajah" or Sabah snake grass. It has been used as a natural product to treat skin rashes, snake bites, lesion caused by herpes, diabetes, fever, and cancer. Therefore, the objectives of this research are to determine the maximum yield and time of exhaustive flavonoids extraction using Peleg's model and to evaluate potential of antiproliferative activity on human lung cancer cell (A549). The extraction process was carried out on fresh and dried leaves at 28 to 30°C with liquid-to-solid ratio of 10 mL/g for 72 hrs. The extracts were collected intermittently analysed using mathematical Peleg's model and RP-HPLC. The highest amount of flavonoids was used to evaluate the inhibitory concentration (IC50) via 2D cell culture of A549. Based on the results obtained, the predicted maximum extract density was observed at 29.20 ± 14.54 hrs of extraction (texhaustive). However, the exhaustive time of extraction to acquire maximum flavonoids content exhibited approximately 10 hrs earlier. Therefore, 18 hrs of extraction time was chosen to acquire high content of flavonoids. The best antiproliferative effect (IC50) on A549 cell line was observed at 138.82 ± 0.60 µg/mL. In conclusion, the flavonoids content in Clinacanthus nutans water extract possesses potential antiproliferative properties against A549, suggesting an alternative approach for cancer treatment.
    Matched MeSH terms: Acanthaceae/chemistry*
  10. Yusof Z, Ramasamy S, Mahmood NZ, Yaacob JS
    Molecules, 2018 Jun 04;23(6).
    PMID: 29867000 DOI: 10.3390/molecules23061345
    This project studied the effect of vermicompost application on the composition of bioactive anthocyanin and phenolic compounds, and the antioxidant activity of Clinacanthus nutans. The correlation between the bioactive constituents and antioxidant capacity was also evaluated. In this project, a field study was conducted using a randomized complete block design (RCBD) with four treatment groups, including control plants (CC), plants supplied with chemical fertilizer (CF), plants supplied with vermicompost (VC), and plants supplied with mixed fertilizer (MF). The leaves of C. nutans from all treatment groups were harvested, subjected to solvent extraction, and used for quantification of total anthocyanin content (TAC), total phenolic content (TPC), and total flavonoid content (TFC). The initial antioxidant activity of the extracts was evaluated using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, as well as after two and four weeks of storage at -20 °C and 4 °C. Data analysis showed that CC plants contained the highest TAC (2180.14 ± 338.43 µg/g dry weight) and TFC (276.25 ± 3.09 mg QE/g dry weight). On the other hand, CF plants showed the highest TPC (181.53 ± 35.58 mg GAE/g dry weight). Moreover, we found that CC plants had the highest antioxidant potential against DPPH radicals whereas MF plants showed the lowest antioxidant potential. After four weeks of extract storage at -20 °C and 4 °C, the TPC, TFC, TAC, and antioxidant potential of the extracts decreased. Extracts from VC showed the lowest percentage of total phenolic and total flavonoid loss after extract storage at -20 °C and 4 °C compared with other plant extracts. At this juncture, it could be deduced that the application of vermicompost had little effect on the expression of phenolics, flavonoids, or anthocyanin in C. nutans. However, the extract from plants treated with vermicompost (VC and MF) showed better stability compared with CC and CF after extract storage at different temperatures.
    Matched MeSH terms: Acanthaceae/chemistry*
  11. Zakaria KN, Amid A, Zakaria Z, Jamal P, Ismail A
    Asian Pac J Cancer Prev, 2019 Feb 26;20(2):563-567.
    PMID: 30803221
    Problem statement: Clinicanthus nutans has been used by Malaysian since long time ago. It is used to treat many diseases including cancer. Many studies carried out on its crude extract but no clear report on the specific secondary metabolites responsible for its nature in treating selected diseases. Objective: This study aims to confirm the practice carried out by many people on the usage of Clinicanthus nutans in treating cancer. Methods: C. nutans leaves were extracted by methanol. Thin layer chromatography was used to identify the suitable solvent for fractions separation. The fractions were then separated at larger volume using gravity column chromatography. Each fraction was tested on its anti-proliferative activity on Hep-G2 liver cancer cells by MTT assay. The phytochemical screening was carried out to identify the bioactive compound based on qualitative analysis. Results: The fraction 2 (F2) of C. nutans showed the lowest IC50 value of 1.73 μg/ml against Hep-G2 cancer cells, and it is identified as triterpenes. Conclusion: The fraction F2 identified as triterpenes isolated from C. nutans has potential as an anti-proliferative agent against liver cancer.
    Matched MeSH terms: Acanthaceae/chemistry*
  12. Chelyn JL, Omar MH, Mohd Yousof NS, Ranggasamy R, Wasiman MI, Ismail Z
    ScientificWorldJournal, 2014;2014:724267.
    PMID: 25405231 DOI: 10.1155/2014/724267
    Clinacanthus nutans (family Acanthaceae) has been used for the treatment of inflammation and herpes viral infection. Currently, there has not been any report on the qualitative and quantitative determination of the chemical markers in the leaves of C. nutans. The C-glycosidic flavones such as shaftoside, isoorientin, orientin, isovitexin, and vitexin have been found to be major flavonoids in the leaves of this plant. Therefore, we had developed a two-step method using thin-layer chromatography (TLC) and high pressure liquid chromatography (HPLC) for the rapid identification and quantification of the flavones C-glycosides in C. nutans leaves. The TLC separation of the chemical markers was achieved on silica gel 60 plate using ethyl acetate : formic acid : acetic acid : water (100 : 11 : 11 : 27 v/v/v/v) as the mobile phase. HPLC method was optimized and validated for the quantification of shaftoside, orientin, isovitexin, and vitexin and was shown to be linear in concentration range tested (0.4-200 μg/mL, r(2) ≥ 0.996), precise (RSD ≤ 4.54%), and accurate (95-105%). The concentration of shaftoside, orientin, vitexin, and isovitexin in C. nutans leave samples was 2.55-17.43, 0.00-0.86, 0.00-2.01, and 0.00-0.91 mmol/g, respectively.
    Matched MeSH terms: Acanthaceae/chemistry*
  13. Almagrami AA, Alshawsh MA, Saif-Ali R, Shwter A, Salem SD, Abdulla MA
    PLoS One, 2014;9(5):e96004.
    PMID: 24819728 DOI: 10.1371/journal.pone.0096004
    Acanthus ilicifolius, a mangrove medicinal plant, is traditionally used to treat a variety of diseases. The aim of this research is to assess the chemoprotective outcomes of A. ilicifolius ethanolic extract against azoxymethane (AOM) induced colonic aberrant crypt foci (ACF) in rats.
    Matched MeSH terms: Acanthaceae/chemistry*
  14. Ho CL, Nguyen PD, Harikrishna JA, Rahim RA
    DNA Seq., 2008 Feb;19(1):73-7.
    PMID: 17852357
    The vacuolar-type H+ -ATPase (V-ATPase) is a multimeric enzyme with diverse functions in plants such as nutrient transport, flowering, stress tolerance, guard cell movement and development. A partial sequence of V-ATPase proteolipid was identified among the expressed sequence tags (ESTs) generated from Acanthus ebracteatus, and selected for full-length sequencing. The 876-nucleotide cDNA consists of an open reading frame of 165 amino acids. The deduced amino acid sequence displays high similarity (81%) with its homologs from Arabidopsis thaliana, Avecinnia marina and Gossypium hirsutum with the four transmembrane domains characteristics of the 16 kDa proteolipid subunit c of V-ATPase well conserved in this protein. Southern analysis revealed the existence of several members of proteolipid subunit c of V-ATPase in A. ebracteatus. The mRNA of this gene was detected in leaf, floral, stem and root tissues, however, the expression level was lower in stem and root tissues.
    Matched MeSH terms: Acanthaceae/chemistry
  15. Farsi E, Esmailli K, Shafaei A, Moradi Khaniabadi P, Al Hindi B, Khadeer Ahamed MB, et al.
    Drug Chem Toxicol, 2016 Oct;39(4):461-73.
    PMID: 27033971 DOI: 10.3109/01480545.2016.1157810
    CONTEXT: Clinacanthus nutans (CN) is used traditionally for treating various illnesses. Robust safety data to support its use is lacking.

    OBJECTIVE: To evaluate the adverse effects of aqueous extract of CN leaves (AECNL).

    MATERIALS AND METHODS: The oral toxicity of the AECNL was tested following Organisation for Economic Co-operation and Development (OECD) guidelines. Mutagenicity (Ames test) of AECNL was evaluated using TA98 and TA100 Salmonella typhimurium strains.

    RESULTS: No mortality or morbidity was found in the animals upon single and repeated dose administration. However, significant body weight loss was observed at 2000 mg/kg during sub-chronic (90 d) exposure. In addition, increased eosinophil at 500 mg/kg and decreased serum alkaline phosphatase levels at 2000 mg/kg were observed in male rats. Variations in glucose and lipid profiles in treated groups were also observed compared to control. Ames test revealed no evidence of mutagenic or carcinogenic effects at 500 μg/well of AECNL.

    CONCLUSION: The median lethal dose (LD50) of the AECNL is >5000 mg/kg and the no-observed-adverse-effect level is identified to be greater than 2000 mg/kg/day in 90-d study.

    Matched MeSH terms: Acanthaceae/chemistry*
  16. Zaridah MZ, Idid SZ, Omar AW, Khozirah S
    J Ethnopharmacol, 2001 Nov;78(1):79-84.
    PMID: 11585692
    Five aqueous extracts from three plant species, i.e., dried husks (HX), dried seeds (SX) and dried leaves (LX) of Xylocarpus granatum (Meliaceae), dried stems (ST) of Tinospora crispa (Menispermaceae) and dried leaves (LA) of Andrographis paniculata (Acanthaceae) were tested in vitro against adult worms of subperiodic Brugia malayi. The relative movability (RM) value of the adult worms over the 24-h observation period was used as a measure of the antifilarial activity of the aqueous extracts. SX extract of X. granatum demonstrated the strongest activity, followed by the LA extract of A. paniculata, ST extract of T. crispa, HX extract and LX extract of X. granatum.
    Matched MeSH terms: Acanthaceae/chemistry*
  17. Lu MC, Li TY, Hsieh YC, Hsieh PC, Chu YL
    Environ Toxicol, 2018 Dec;33(12):1229-1236.
    PMID: 30188005 DOI: 10.1002/tox.22629
    Clinacanthus nutans has been used as herbal medicine with antidiabetic, blood pressure lowering, and diuretic properties in Singapore, Thailand, and Malaysia. The in vitro cellular study showed the chloroform extract possessed significant cytotoxicity against leukemia K562 and lymphoma Raji cells. The clinical study reported that administration of plant could treat or prevent relapse in 12 cancer patients. However, detailed mechanism of the anticancer effects and chemical profiles are not thoroughly studied. The chemical study did show that the acetone extract (MHA) exerted the highest antiproliferative effect on human leukemia MOLT-4 cells and lymphoma SUP-T1 cells in dose-dependent cytotoxicity. We found that the use of MHA increased apoptosis by 4.28%-43.65% and caused disruption of mitochondrial membrane potential (MMP) by 11.79%-26.93%, increased reactive oxygen species (ROS) by 19.54% and increased calcium ion by 233.83%, as demonstrated by annexin-V/PI, JC-1, H2 DCFDA, and Flou-3 staining assays, respectively. MHA-induced ER stress was confirmed by increase expression of CHOP and IRE-1α with western blotting assay. In conclusion, we identified good bioactivity in Clinacanthus nutans and recognize its potential effect on cancer therapy, but further research is needed to determine the use of the plant.
    Matched MeSH terms: Acanthaceae/chemistry*
  18. Murugesu S, Ibrahim Z, Ahmed QU, Nik Yusoff NI, Uzir BF, Perumal V, et al.
    Molecules, 2018 Sep 19;23(9).
    PMID: 30235889 DOI: 10.3390/molecules23092402
    BACKGROUND: Clinacanthus nutans (C. nutans) is an Acanthaceae herbal shrub traditionally consumed to treat various diseases including diabetes in Malaysia. This study was designed to evaluate the α-glucosidase inhibitory activity of C. nutans leaves extracts, and to identify the metabolites responsible for the bioactivity.

    METHODS: Crude extract obtained from the dried leaves using 80% methanolic solution was further partitioned using different polarity solvents. The resultant extracts were investigated for their α-glucosidase inhibitory potential followed by metabolites profiling using the gas chromatography tandem with mass spectrometry (GC-MS).

    RESULTS: Multivariate data analysis was developed by correlating the bioactivity, and GC-MS data generated a suitable partial least square (PLS) model resulting in 11 bioactive compounds, namely, palmitic acid, phytol, hexadecanoic acid (methyl ester), 1-monopalmitin, stigmast-5-ene, pentadecanoic acid, heptadecanoic acid, 1-linolenoylglycerol, glycerol monostearate, alpha-tocospiro B, and stigmasterol. In-silico study via molecular docking was carried out using the crystal structure Saccharomyces cerevisiae isomaltase (PDB code: 3A4A). Interactions between the inhibitors and the protein were predicted involving residues, namely LYS156, THR310, PRO312, LEU313, GLU411, and ASN415 with hydrogen bond, while PHE314 and ARG315 with hydrophobic bonding.

    CONCLUSION: The study provides informative data on the potential α-glucosidase inhibitors identified in C. nutans leaves, indicating the plant's therapeutic effect to manage hyperglycemia.

    Matched MeSH terms: Acanthaceae/chemistry*
  19. Zakaria ZA, Abdul Rahim MH, Mohd Sani MH, Omar MH, Ching SM, Abdul Kadir A, et al.
    BMC Complement Altern Med, 2019 Apr 02;19(1):79.
    PMID: 30940120 DOI: 10.1186/s12906-019-2486-8
    BACKGROUND: Methanol extract (MECN) of Clinacanthus nutans Lindau leaves (family Acanthaceae) demonstrated peripherally and centrally mediated antinociceptive activity via the modulation of opioid/NO-mediated, but cGMP-independent pathway. In the present study, MECN was sequentially partitioned to obtain petroleum ether extract of C. nutans (PECN), which was subjected to antinociceptive study with aims of establishing its antinociceptive potential and determining the role of opioid receptors and L-arginine/nitric oxide/cyclic-guanosine monophosphate (L-arg/NO/cGMP) pathway in the observed antinociceptive activity.

    METHODS: The antinociceptive potential of orally administered PECN (100, 250, 500 mg/kg) was studied using the abdominal constriction-, hot plate- and formalin-induced paw licking-test in mice (n = 6). The effect of PECN on locomotor activity was also evaluated using the rota rod assay. The role of opioid receptors was determined by pre-challenging 500 mg/kg PECN (p.o.) with antagonist of opioid receptor subtypes, namely β-funaltrexamine (β-FNA; 10 mg/kg; a μ-opioid antagonist), naltrindole (NALT; 1 mg/kg; a δ-opioid antagonist) or nor-binaltorphimine (nor-BNI; 1 mg/kg; a κ-opioid antagonist) followed by subjection to the abdominal constriction test. In addition, the role of L-arg/NO/cGMP pathway was determined by prechallenging 500 mg/kg PECN (p.o.) with L-arg (20 mg/kg; a NO precursor), 1H-[1, 2, 4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 2 mg/kg; a specific soluble guanylyl cyclase inhibitor), or the combinations thereof (L-arg + ODQ) for 5 mins before subjection to the abdominal constriction test. PECN was also subjected to phytoconstituents analyses.

    RESULTS: PECN significantly (p  0.05) affect the locomotor activity of treated mice. The antinociceptive activity of PECN was significantly (p  0.05) affected by ODQ. HPLC analysis revealed the presence of at least cinnamic acid in PECN.

    CONCLUSION: PECN exerted antinocicpetive activity at peripheral and central levels possibly via the activation of non-selective opioid receptors and modulation of the NO-mediated/cGMP-independent pathway partly via the synergistic action of phenolic compounds.

    Matched MeSH terms: Acanthaceae/chemistry*
  20. Alam MA, Zaidul IS, Ghafoor K, Sahena F, Hakim MA, Rafii MY, et al.
    BMC Complement Altern Med, 2017 Mar 31;17(1):181.
    PMID: 28359331 DOI: 10.1186/s12906-017-1684-5
    BACKGROUND: This study was aimed to evaluate antioxidant and α-glucosidase inhibitory activity, with a subsequent analysis of total phenolic and total flavonoid content of methanol extract and its derived fractions from Clinacanthus nutans accompanied by comprehensive phytochemical profiling.

    METHODS: Liquid-liquid partition chromatography was used to separate methanolic extract to get hexane, ethyl acetate, butanol and residual aqueous fractions. The total antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging and ferric reducing antioxidant power assay (FRAP). The antidiabetic activity of methanol extract and its consequent fractions were examined by α-glucosidase inhibitory bioassay. The chemical profiling was carried out by gas chromatography coupled with quadrupole time-of-flight mass spectrometry (GC Q-TOF MS).

    RESULTS: The total yield for methanol extraction was (12.63 ± 0.98) % (w/w) and highest fractionated value found for residual aqueous (52.25 ± 1.01) % (w/w) as compared to the other fractions. Significant DPPH free radical scavenging activity was found for methanolic extract (63.07 ± 0.11) % and (79.98 ± 0.31) % for ethyl acetate fraction among all the fractions evaluated. Methanol extract was the most prominent in case of FRAP (141.89 ± 0.87 μg AAE/g) whereas most effective reducing power observed in ethyl acetate fraction (133.6 ± 0.2987 μg AAE/g). The results also indicated a substantial α-glucosidase inhibitory activity for butanol fraction (72.16 ± 1.0) % and ethyl acetate fraction (70.76 ± 0.49) %. The statistical analysis revealed that total phenolic and total flavonoid content of the samples had the significant (p 

    Matched MeSH terms: Acanthaceae/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links