Displaying publications 1 - 20 of 92 in total

Abstract:
Sort:
  1. de Moraes Porto IC, Honório NC, Amorim DA, de Melo Franco AV, Penteado LA, Parolia A
    J Conserv Dent, 2014 Jan;17(1):65-9.
    PMID: 24554865 DOI: 10.4103/0972-0707.124151
    The radiopacity of contemporary adhesive systems has been mentioned as the indication for replacement of restorations due to misinterpretation of radiographic images.
    Matched MeSH terms: Adhesives
  2. Xue YT, Chen MY, Cao JS, Wang L, Hu JH, Li SY, et al.
    Mil Med Res, 2023 Mar 23;10(1):15.
    PMID: 36949519 DOI: 10.1186/s40779-023-00451-1
    BACKGROUND: Reconstruction of damaged tissues requires both surface hemostasis and tissue bridging. Tissues with damage resulting from physical trauma or surgical treatments may have arbitrary surface topographies, making tissue bridging challenging.

    METHODS: This study proposes a tissue adhesive in the form of adhesive cryogel particles (ACPs) made from chitosan, acrylic acid, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The adhesion performance was examined by the 180-degree peel test to a collection of tissues including porcine heart, intestine, liver, muscle, and stomach. Cytotoxicity of ACPs was evaluated by cell proliferation of human normal liver cells (LO2) and human intestinal epithelial cells (Caco-2). The degree of inflammation and biodegradability were examined in dorsal subcutaneous rat models. The ability of ACPs to bridge irregular tissue defects was assessed using porcine heart, liver, and kidney as the ex vivo models. Furthermore, a model of repairing liver rupture in rats and an intestinal anastomosis in rabbits were established to verify the effectiveness, biocompatibility, and applicability in clinical surgery.

    RESULTS: ACPs are applicable to confined and irregular tissue defects, such as deep herringbone grooves in the parenchyma organs and annular sections in the cavernous organs. ACPs formed tough adhesion between tissues [(670.9 ± 50.1) J/m2 for the heart, (607.6 ± 30.0) J/m2 for the intestine, (473.7 ± 37.0) J/m2 for the liver, (186.1 ± 13.3) J/m2 for muscle, and (579.3 ± 32.3) J/m2 for the stomach]. ACPs showed considerable cytocompatibility in vitro study, with a high level of cell viability for 3 d [(98.8 ± 1.2) % for LO2 and (98.3 ± 1.6) % for Caco-2]. It has comparable inflammation repair in a ruptured rat liver (P = 0.58 compared with suture closure), the same with intestinal anastomosis in rabbits (P = 0.40 compared with suture anastomosis). Additionally, ACPs-based intestinal anastomosis (less than 30 s) was remarkably faster than the conventional suturing process (more than 10 min). When ACPs degrade after surgery, the tissues heal across the adhesion interface.

    CONCLUSIONS: ACPs are promising as the adhesive for clinical operations and battlefield rescue, with the capability to bridge irregular tissue defects rapidly.

    Matched MeSH terms: Adhesives*; Tissue Adhesives*
  3. Sulaiman S, Yunus H, Sohadi R
    Med Vet Entomol, 1987 Jul;1(3):273-8.
    PMID: 2979541
    1. Seven types of water-insoluble adhesives were evaluated in sticky traps for collecting adults of Musca domestica L. and Chrysomya megacephala (Fabricius) or mosquito larvae (Aedes aegypti (L.) and Culex quinquefasciatus Say). 2. Adhesive viscosity affected the tackiness of the glues and this determined their trapping efficiency in air or water. 3. From the 'Hyvis' range of adhesives tested, 'Hyvis 200' was most effective for trapping adult flies. 4. With 24 h exposure to fourth instar Ae.aegypti larvae in tapwater, submerged plates coated with 'Hyvis 10', 'Hyvis 30' or 'Hyvis 200' formulations trapped the majority of larvae. In polluted water the highest rates of trapping were 17.3% of Ae.aegypti and 18.7% of Cx quinquefasciatus with 'Hyvis 200'. Floating traps were consistently less productive than submerged traps under laboratory conditions. 5. In a heavily polluted natural breeding-site of Cx quinquefasciatus, floating traps were more productive than submerged sticky traps with four of seven adhesives tested, the most efficient being 'Hyvis 200' (4.2 mosquitoes per hour) and Hyvis:polyethylene 90:10 (4.5/h). Despite the relative inefficiency of aquatic traps, emergent adults, pupae and second to fourth instars of larvae were collected quickly from the habitat.
    Matched MeSH terms: Adhesives*
  4. Soubam T, Gupta A, Jamari SS
    Environ Sci Pollut Res Int, 2023 Dec;30(60):124610-124618.
    PMID: 35610450 DOI: 10.1007/s11356-022-20788-9
    Synthetic adhesives used in the production of plywood are a matter of concern because of the emission of carcinogenic gas formaldehyde, increased environmental pollution, and the depletion of fossil fuels. In this study, a bioadhesive composed of natural rubber latex (NRL) and rice starch was developed. However, rice starch has low moisture resistance, resulting in low adhesion. Thus, to enhance the effectiveness of NRL-blended rice starch-based bioadhesive, rice starch was cross-linked with polymeric 4,4″-diphenylmethane diisocyanate (pMDI) resin, which is an environment-friendly, formaldehyde free, and moisture resistant that is highly compatible with starch. The chemical interaction, viscosity, solid content, and gel time of the developed NRL-isocyanate cross-linked rice starch-based bioadhesive was investigated. The efficacy of the formulated bioadhesive was demonstrated by the fabrication of plywood. The presence of isocyanate and urethane capabilities in the bioadhesive formulations was confirmed by Fourier transform infrared spectroscopy (FTIR). The bioadhesive type Iso-A was discovered to have the highest viscosity of 8270 mPa.s, whereas Iso-B has the shortest gel time of 3.46 min and the highest solid content of 44%; the higher solid content accelerates the gel time. In terms of physical and mechanical properties of plywood, Iso-B has the lowest thickness swelling (TS) value of 13%, lowest water absorption (WA) value of 52% and shear strength value of 1.92 MPa, which corresponds to the ISO 12466-2-2007 standard requirements. Based on the results, NRL-blended isocyanate starch-based bioadhesive could be a good potential raw material for eco-friendly plywood industries with adequate accuracy.
    Matched MeSH terms: Adhesives/chemistry
  5. Anuar Ramdhan I, Zulmi W, Hidayah A, Kamel M, Fadhil M, Anwar Hau M
    Malays Orthop J, 2013 Mar;7(1):52-5.
    PMID: 25722808 MyJurnal DOI: 10.5704/MOJ.1303.017
    Coaptive film (i.e., Steri-Strips™) is an adhesive tape used to replace sutures in wound closure. The use of coaptive film for wound closure after long bone fracture fixation has not been well documented in the literature.
    Matched MeSH terms: Adhesives
  6. Karobari MI, Batul R, Snigdha NTS, Al-Rawas M, Noorani TY
    PLoS One, 2023;18(11):e0294076.
    PMID: 37956149 DOI: 10.1371/journal.pone.0294076
    INTRODUCTION: Root canal sealing materials play a crucial role in an endodontic procedure by forming a bond between the dentinal walls and the gutta-percha. The current study aims to analyse the dentinal tubule penetration and adhesive pattern, including the push-out bond strength of six commercially available root canal sealers.

    METHODOLOGY: Eighty-four mandibular first premolars were split into seven groups (and n = 12), Group 1: Dia-Root, Group 2: One-Fil, Group 3: BioRoot RCS, Group 4: AH Plus, Group 5: CeraSeal, Group 6: iRoot SP, Group 7: GP without sealer (control). Two groups were made, one for dentinal tubule penetration and the other for push-out bond strength; the total sample size was one hundred sixty-eight. Root canal treatment was performed using a method called the crown down technique, and for obturation, the single cone technique was used. A confocal laser scanning microscope (Leica, Microsystem Heidel GmbH, Version 2.00 build 0585, Germany) was used to evaluate dentinal tubule penetration, and Universal Testing Machine was utilised to measure the push-out bond strength (Shimadzu, Japan) using a plunger size of 0.4 mm and speed of 1mm/min. Finally, the adhesive pattern of the sealers was analysed by HIROX digital microscope (KH-7700). Statistical analysis was carried out by a one-way Anova test, Dunnet's T3 test, and Chi-square test.

    RESULTS: Highest dentinal tubule penetration was noticed with One-Fil (p<0.05), followed by iRoot SP, CeraSeal, AH Plus, Dia-Root also, the most negligible value was recorded for BioRoot RCS. Meanwhile, BioRoot RCS (p<0.05) demonstrated the greater value of mean push-out bond strength, followed by One-fil, iRoot SP, CeraSeal, AH Plus and Dia-Root. Regarding adhesive pattern, most of the samples were classified as type 3 and type 4 which implies greater sealing ability and better adherence to the dentinal wall. However, BioRoot RCS revealed the most type 4 (p<0.05), followed by AH Plus, One-Fil, CeraSeal and Dia-Root.

    CONCLUSION: The highest dentinal tubule penetration was shown by One-Fil compared to other groups. Meanwhile, BioRoot RCS had greater push-out bond strength and more adhesive pattern than other tested materials.

    Matched MeSH terms: Adhesives*
  7. Hazwan Hussin M, Aziz AA, Iqbal A, Ibrahim MNM, Latif NHA
    Int J Biol Macromol, 2019 Feb 01;122:713-722.
    PMID: 30399384 DOI: 10.1016/j.ijbiomac.2018.11.009
    The recent study focused on lignin-phenol-glyoxal (LPG) as an alternative way to replace toxic formaldehyde used in commercially available wood adhesives. The concern of the uses of carcinogenic formaldehyde in wood adhesive industry has become major problem over human health, environmental and economy issues. In this study, lignin isolated from Kenaf (Hibiscus cannabinus) via soda and Kraft pulping were modified into SLPG (soda lignin-phenol-glyoxal) and KLPG (Kraft lignin-phenol-glyoxal) adhesives and were compared to phenol-formaldehyde (PF). Complementary analyses such as Fourier Transform Infrared (FTIR) spectroscopy, 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopy, thermal stability; Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) were utilized to characterize all isolated lignin samples. The physical properties of the resins were further characterized in term of viscosity, gel time and total solid content. It was found that soda lignin comprised higher phenolic OH content and greater molecular weight compared to Kraft lignin. Various molar ratio of adhesives were applied on plywood and were mechanically tested. The 30% (w/w) SLPG has shown to have higher tensile strength and internal bonding stress at 72.08 MPa and 53.83 N mm-2 respectively to that of PF.
    Matched MeSH terms: Adhesives/chemistry*
  8. Sarah Amalina Adli, Fathilah Binti Ali, Azlin Suhaida Azmi, Hazleen Anuar, Rosnani Hasham
    MyJurnal
    Patches has recently emerged and attracting more attention for its versatility in many areas such as cosmetic, pharmaceutical and medical. Patches can either be used to administer selected drug to skin or deliver some beneficial ingredients for cosmetic purposes. With that, as polymer is used as the matrix for patches, the polymer selected must be non-toxic, have adhesive property and non-irritative to the skin. Currently, synthetic polymer had been used as the matrix. However, as time passes, people are more concern with the environment, therefore biopolymer is chosen over synthetic polymer as they are degradable and also safe to use. Nowadays, as consumers are demanding for a more effective product that is not only good for appearance but also the health of the skin, studies had been done on many kinds of active ingredient that will give the best effect to the skin. Thus in this paper, patches made up of different combinations of polymer and active ingredients, as well as fabrication method currently used to produce patches will be discussed.
    Matched MeSH terms: Adhesives
  9. Al-Fasih MY, Mohamad ME, Ibrahim IS, Ahmad Y, Ariffin MAM, Sarbini NN, et al.
    PLoS One, 2021;16(5):e0252050.
    PMID: 34015027 DOI: 10.1371/journal.pone.0252050
    Effects of different surface textures on the interface shear strength, interface slip, and failure modes of the concrete-to-concrete bond are examined through finite element numerical model and experimental methods in the presence of the horizontal load with 'push-off' technique under different normal stresses. Three different surface textures are considered; smooth, indented, and transversely roughened to finish the top surfaces of the concrete bases. In the three-dimensional modeling via the ABAQUS solver, the Cohesive Zone Model (CZM) is used to simulate the interface shear failure. It is observed that the interface shear strength increases with the applied normal stress. The transversely roughened surface achieves the highest interface shear strength compared with those finished with the indented and smooth approaches. The smooth and indented surfaces are controlled by the adhesive failure mode while the transversely roughened surface is dominated by the cohesive failure mode. Also, it is observed that the CZM approach can accurately model the interface shear failure with 3-29% differences between the modeled and the experimental test findings.
    Matched MeSH terms: Adhesives
  10. Husein, A.
    MyJurnal
    Lasers were introduced into the field of clinical dentistry with the hope of overcoming some of the drawbacks posed by the conventional methods of dental procedures. Since its first experiment for dental application in the 1960s, the use of laser has increased rapidly in the last couple of decades. At present, wide varieties of procedures are carried out using lasers. The aim of this review is to describe the application of lasers in dental hard tissue procedures. Lasers are found to be effective in cavity preparation, caries removal, restoration removal, etching, and treatment of dentinal sensitivity, caries prevention and bleaching. Based on development in adhesive dentistry and the propagation of minimum intervention principles, lasers may revolutionize cavity design and preparation.
    Matched MeSH terms: Adhesives
  11. Li M, Li W, Guan Q, Dai X, Lv J, Xia Z, et al.
    ACS Nano, 2021 12 28;15(12):19194-19201.
    PMID: 34797635 DOI: 10.1021/acsnano.1c03882
    Dry adhesives that combine strong adhesion, high transparency, and reusability are needed to support developments in emerging fields such as medical electrodes and the bonding of electronic optical devices. However, achieving all of these features in a single material remains challenging. Herein, we propose a pressure-responsive polyurethane (PU) adhesive inspired by the octopus sucker. This adhesive not only showcases reversible adhesion to both solid materials and biological tissues but also exhibits robust stability and high transparency (>90%). As the adhesive strength of the PU adhesive corresponds to the application force, adhesion could be adjusted by the preloading force and/or pressure. The adhesive exhibits high static adhesion (∼120 kPa) and 180° peeling force (∼500 N/m), which is far stronger than those of most existing artificial dry adhesives. Moreover, the adhesion strength is effectively maintained even after 100 bonding-peeling cycles. Because the adhesive tape relies on the combination of negative pressure and intermolecular forces, it overcomes the underlying problems caused by glue residue like that left by traditional glue tapes after removal. In addition, the PU adhesive also shows wet-cleaning performance; the contaminated tape can recover 90-95% of the lost adhesion strength after being cleaned with water. The results show that an adhesive with a microstructure designed to increase the contribution of negative pressure can combine high reversible adhesion and long fatigue life.
    Matched MeSH terms: Adhesives
  12. Naz MY, Sulaiman SA, Ariwahjoedi B, Shaari KZ
    ScientificWorldJournal, 2014;2014:375206.
    PMID: 24592165 DOI: 10.1155/2014/375206
    The objective of the research was to understand and improve the unusual physical and atomization properties of the complexes/adhesives derived from the tapioca starch by addition of borate and urea. The characterization of physical properties of the synthesized adhesives was carried out by determining the effect of temperature, shear rate, and mass concentration of thickener/stabilizer on the complex viscosity, density, and surface tension. In later stage, phenomenological analyses of spray jet breakup of heated complexes were performed in still air. Using a high speed digital camera, the jet breakup dynamics were visualized as a function of the system input parameters. The further analysis of the grabbed images confirmed the strong influence of the input processing parameters on full cone spray patternation. It was also predicted that the heated starch adhesive solutions generate a dispersed spray pattern by utilizing the partial evaporation of the spraying medium. Below 40°C of heating temperature, the radial spray cone width and angle did not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The discharge coefficient, mean flow rate, and mean flow velocity were significantly influenced by the load pressure but less affected by the temperature.
    Matched MeSH terms: Adhesives/chemistry
  13. Vakili AH, Selamat MR, Moayedi H
    ScientificWorldJournal, 2013;2013:547615.
    PMID: 23864828 DOI: 10.1155/2013/547615
    Use of dispersive clay as construction material requires treatment such as by chemical addition. Treatments to dispersive clay using pozzolan and Portland cement, singly and simultaneously, were carried out in this study. When used alone, the optimum amount of pozzolan required to treat a fully dispersive clay sample was 5%, but the curing time to reduce dispersion potential, from 100% to 30% or less, was 3 month long. On the other hand, also when used alone, a 3% cement content was capable of reducing dispersion potential to almost zero percent in only 7 days; and a 2% cement content was capable of achieving similar result in 14 days. However, treatment by cement alone is costly and could jeopardize the long term performance. Thus, a combined 5% pozzolan and 1.5% cement content was found capable of reducing dispersion potential from 100% to zero percent in 14 days. The results indicate that although simultaneous treatment with pozzolan and cement would extend the required curing time in comparison to treatment by cement alone of a higher content, the task could still be carried out in a reasonable period of curing time while avoiding the drawbacks of using either pozzolan or cement alone.
    Matched MeSH terms: Adhesives/chemistry*
  14. Aziz NA, Latip AFA, Peng LC, Latif NHA, Brosse N, Hashim R, et al.
    Int J Biol Macromol, 2019 Dec 01;141:185-196.
    PMID: 31479667 DOI: 10.1016/j.ijbiomac.2019.08.255
    Lignin was extracted from coconut husk via alkaline pulping, either Kraft or soda. The isolated lignin samples were classified as hydroxy-benzaldehyde, vanillin, and syringaldehyde type according to Fourier-transform Infrared Spectroscopy, 1H and 13C Nuclear Magnetic Resonance (NMR) spectra. Soda lignin (SL) showed higher thermal stability and glass transition temperature (Tg) than Kraft lignin (KL) as proven by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. The soda-lignin-phenol-glyoxal (SLPG) resins with the optimum percentage of lignin substitution at 30% showed improved solid content and gel time in comparison to 30% of Kraft-lignin-phenol-glyoxal (KLPG) and phenol-glyoxal (PG) resin. The good mechanical properties in SLPG is due to the higher amount of molecular weight as well as higher phenolic and G-type unit in lignin that improve the properties of 30% SLPG adhesive. Moreover, the addition of layered double hydroxides (LDH) as reinforced filler up to 15%-30% SLPG adhesive blend shows a great performance (especially mechanical properties) as compared to 30% SLPG adhesive alone.
    Matched MeSH terms: Adhesives/chemistry*
  15. Wong CF, Yuen KH, Peh KK
    Int J Pharm, 1999 Mar 25;180(1):47-57.
    PMID: 10089291
    A method using a texture analyzer equipment and chicken pouch as the biological tissue was investigated for measuring the bioadhesive properties of polymers under simulated buccal conditions. The method was evaluated using two polymers, namely Carbopol 974P and Methocel K4M while the instrument variables studied included the contact force, contact time and speed of withdrawal of the probe from the tissue. The parameters measured were the work of adhesion and peak detachment force. Longer contact time and faster probe speed not only gave better reproducibility of results, but also better sensitivities for both parameters measured. On the other hand, a certain level of contact force was found essential for achieving good bioadhesion, above which there was no further contribution to the bioadhesion process. When the method was applied to determine the bioadhesiveness of several polymers, the values obtained for the work of adhesion and peak detachment force were quite consistent in the ranking of the polymers. The Carbopols were found to have the highest values, followed by gelatin, sodium carboxymethyl celluloses and hydroxypropylmethyl celluloses. On the other hand, Alginic acid, Eudragit RLPO and RSPO, and Chitosan appeared to have low bioadhesive values.
    Matched MeSH terms: Adhesives*
  16. Hazwan Hussin M, Samad NA, Latif NHA, Rozuli NA, Yusoff SB, Gambier F, et al.
    Int J Biol Macromol, 2018 Jul 01;113:1266-1272.
    PMID: 29548919 DOI: 10.1016/j.ijbiomac.2018.03.048
    Lignocellulosic materials can significantly contribute to the development of eco-friendly wood adhesives. In this work, glyoxal-phenolic resins for plywood were prepared using organosolv lignin, which was isolated from black liquor recovered from organosolv pulping of oil palm fronds (OPF) and considered to be an alternative to phenol. Glyoxal, which is a dialdehyde obtained from several natural resources, was used as substitute for formaldehyde. The structure of organosolv lignin and the resins were characterized by FTIR and NMR, and for thermal stability by TGA and DSC. The resins were further studied for their viscosity, pH, solids content and gel times. The resins performance as wood adhesive was further established from mechanical test in terms of tensile strength and modulus of elasticity (MOE) to obtain the optimum ratios of organosolv lignin, which replaces phenol in organosolv lignin phenol glyoxal (OLPG) resins. The adhesive composition having 50% (w/w) of phenol substituted by organosolv lignin, termed as 50% OLPG showed highest adhesive strength compared to phenol formaldehyde (PF) commercial adhesive.
    Matched MeSH terms: Adhesives/chemistry*
  17. Aggarwal H, Kumar P, Eachempati P, Krishanappa SK
    J Prosthet Dent, 2015 Sep;114(3):456-7.
    PMID: 26047802 DOI: 10.1016/j.prosdent.2015.04.010
    This article describes a cost-effective, expedient, and time-saving technique for surface texturing a facial prosthesis with fine sand mixed in resin adhesive glue.
    Matched MeSH terms: Adhesives
  18. Yanti Johari, Zaihan Ariffin, Haslina Taib, Norehan Mokhtar
    MyJurnal
    Resin-bonded fibre-reinforced composite bridges provide many advantages over the conventional
    bridges or implant treatment in the management of a traumatically or congenitally missing anterior tooth.
    Furthermore, there is an increasing demand towards providing a metal free resin-bonded bridges over the alloybased
    restorations in order to meet the aesthetic needs especially in the anterior region. Advances in the
    adhesive technology and tooth colored materials offer improved bonding system and better aesthetic outcome.
    Nevertheless, careful selection of cases to receive this type of approach is also one of the key factor to ensure
    the clinical survival of fibre-reinforced composite bridges. This report aims to present the use of fibre-reinforced
    composite to construct indirect cantilever fibre-reinforced composite bridges as part of minimum intervention
    dentistry.
    Matched MeSH terms: Adhesives
  19. Ahmed T, Rahman NA, Alam MK
    Eur J Dent, 2018 10 30;12(4):602-609.
    PMID: 30369810 DOI: 10.4103/ejd.ejd_22_18
    The aim of this study was to systematically review the available studies measuring the bond strength of orthodontic bracket-adhesive system under different experimental conditions in vivo. Literature search was performed in four different databases: PubMed, Web of Science, Cochrane, and Scopus using the keywords - bond strength, orthodontic brackets, bracket-adhesive, and in vivo. A total of six full-text articles were selected based on the inclusion and exclusion criteria of our study after a careful assessment by the two independent reviewers. Data selection was performed by following PRISMA 2009 guidelines. Five of the selected studies were clinical trials; one study was a randomized clinical trial. From each of the selected articles, the following data were extracted - number of samples, with the type of tooth involved materials under experiment methods of measurement, the time interval between bonding and debonding orthodontic brackets, mode of force application, and the bond strength results with the overall outcome. The methodological quality assessment of each article was done by the modified Downs and Black checklist method. The qualitative analyses were done by two independent reviewers. Conflicting issues were resolved in a consensus meeting by consulting the third reviewer (MKA). Meta-analysis could not be performed due to the lack of homogenous study results. The review reached no real conclusion apart from the lack of efforts to clinically evaluate the bonding efficiency of a wide range of orthodontic bracket-adhesive systems in terms of debonding force compared to laboratory-based in vitro and ex vivo studies.
    Matched MeSH terms: Adhesives
  20. Noor Sam A, Asma A
    Sains Malaysiana, 2012;41:1051-1056.
    A good adhesive is an important factor to consider in orthodontic bonding. Frequent bracket failure prolongs treatment duration and causes inconvenience to patient and operator. This study aimed to compare the effectiveness of two bonding agents, i.e. the self etching primer (SEP) and the conventional etch and bond (CEB) by monitoring the incidence, time and
    sites of bracket failure. Eighty orthodontic patients were recruited after informed consent were obtained. A randomized split mouth technique was used where one side was bonded with CEB agent, while the other side was bonded using SEP agent. All bonded brackets were examined every 4 weeks for 20 months. Incidence of bracket failure was noted and
    comparison between the two groups was done using paired t-test. Time and frequent site of failure were also assessed. Out of 1314 brackets, only 33 brackets were debonded with 16 from SEP group and 17 from CEB group which statistically insignificant (p>0.05). Almost 55% of bracket failure occurred during the first 3 months after bonding for both adhesives
    with lower premolars was most the frequent site to fail in both adhesives (39.4%). Bracket bonded on the left side failed significantly compared to the right side. In conclusion, both self-etching primer and conventional acid-etch bonding agents are equally effective in retaining brackets clinically. Bracket failure mostly occurres during the first 3 months after bonding. The premolar brackets and the left side are mostly debonded when compared to other sites.
    Matched MeSH terms: Adhesives
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links