METHODS: This systematic review was performed conforming to preferred reporting items for systematic review and meta-analysis (PRISMA) model. Four different databases (PubMed, Science Direct, Scopus and Medline databases) as well as manual searching were adopted. Relevant studies from January 2000 till September 2021 were retrieved. Critical Appraisal Skills Programme (CASP) was used to assess the quality of the selected studies.
RESULTS: Out of 755 articles, only 14 which met the eligibility criteria were included. Six studies found that titanium dioxide nanotube (TNT) reduced oxidative stress and promoted osteoblastic activity through its effect on Wnt, mitogen-activated protein kinase (MAPK) and forkhead box protein O1 (FoxO1) signaling pathways. On the other hand, three studies confirmed that titanium dioxide nanoparticles (TiO2NPs) induce oxidative stress, reduce ostegenesis and impair antioxidant defense system as a significant negative correlation was found between decreased SIR3 protein level and increased superoxide (O2 •-). Moreover, five studies proved that titanium implant alloy enhances the generation of ROS and induces cytotoxicity of osteoblast cells via its effect on NOX pathway.
CONCLUSION: TiO2NPs stimulate a wide array of oxidative stress related pathways. Scientific evidence are in favor to support the use of TiO2 nanotube-coated titanium implants to reduce oxidative stress and promote osteogenesis in bone remodeling. To validate the cellular and molecular cross talk in bone remodeling of the present review, well-controlled clinical trials with a large sample size are required.
METHODS: This was an open-label, prospective, case-controlled study, conducted over 12 months. Fifty-two consecutive patients referred for secondary hypertension were screened. Eighteen patients with confirmed PA (diagnosis based on the Endocrine Society clinical guideline) and seventeen matched controls with essential hypertension were recruited. BTM (CTX and P1NP), BMD, intact parathyroid hormone (iPTH), and bone profile were assessed at baseline and three months following treatment among the PA patients. Calcium intake was assessed using a validated questionnaire. Primary outcomes were the changes of bone markers and BMD following treatment of PA, and their relation to other parameters.
RESULTS: PA patients had significantly lower serum calcium and higher iPTH despite comparable vitamin D levels with control group. Both BTM were significantly higher among the PA group. BMD of lumbar spine, neck of femur and distal radius did not differ between groups. Three months following treatment, there were significant: 1) reduction in BTM; 2) improvement in the lumbar spine BMD; 3) reduction in iPTH level; and 4) increment of serum 25-OH vitamin D level.
CONCLUSIONS: Our findings support that bone loss and potential fracture risk among PA patients are likely a result of aldosterone-mediated secondary hyperparathyroidism. Patients with early PA may already exhibit increased bone turnover despite no significant changes in BMD.
METHODS: Eighty (80) male, 6-week-old Sprague Dawley rats were grouped in to four groups, the first group was irradiated with (940 nm) diode laser, second group with LIPUS, and third group with combination of both LLLT and LIPUS. A forth group used was a control group in an incomplete block split-mouth design. The LLLT and LIPUS were used to treat the area around the moving tooth once a day on days 0-7, then the experiment was ended in each experimental endpoint (1, 3, 7, 14, and 21 days). For amount of tooth movement, models were imaged and analyzed. Histological examination was performed after staining with (hematoxylin and eosin) and (alizarin red and Alcian Blue) stain. One step reverse transcription-polymerase chain reaction RT-PCR was also performed to elucidate the gene expression of RANK, RANKL, OPG, and RUNX-2.
RESULTS: The amount of tooth movement, the histological bone remodeling, and the RT-PCR were significantly greater in the treatment groups than that in the control group. Among the treatment groups, the combination group was the highest and the LIPUS group was the lowest.
CONCLUSION: These findings suggest that LLLT and LIPUS can enhance the velocity of tooth movement and improve the quality of bone remodeling during orthodontic tooth movement.
OBJECTIVE: This study aimed to determine the effectiveness of annatto-tocotrienol on the bone turnover markers and bone histomorphometry in a model of male osteoporosis induced by buserelin (a GnRH agonist).
METHODS: Forty-six three-months-old male Sprague-Dawley rats (three months old; 300-350 g) were randomly divided into six groups. The baseline control group (n = 6) was sacrificed at the onset of the study. The normal control group (n = 8) received corn oil (the vehicle of tocotrienol) orally daily and normal saline (the vehicle of buserelin) subcutaneously daily. The buserelin control (n = 8) received corn oil orally daily and subcutaneous buserelin injection 75 μg/kg/day daily. The calcium control (n = 8) received 1% calcium in drinking water and subcutaneous buserelin injection 75 μg/kg/day. The remaining rats were treated with two different treatments, i.e., (1) oral annatto tocotrienol at 60 mg/kg/day plus subcutaneous buserelin injection 75 μg/kg/day (n = 8); (2) oral annatto tocotrienol at 100 mg/kg/day plus subcutaneous buserelin injection 75 μg/kg/day (n = 8). The rats were injected with calcein twice before being sacrificed to label the bones. The rats were euthanized, and their blood and right femur were harvested at the end of the treatment for bone turnover markers and bone histomorphometry examination.
RESULTS: Both serum osteocalcin and C-telopeptide of type 1 collagen were not significantly different between treated groups and buserelin control (P > 0.05). The buserelin control group had a significantly lower bone volume and higher eroded surface compared with the normal control group (P bone volume, trabecular thickness and osteoblast number, as well as a significantly lower single-labelled surface compared with the buserelin control (P bone loss by increasing the mineralising surface and osteoblasts number. Thus, it has a potential role in preventing bone loss in men using GnRH agonist.
Methods: Eighteen male Dorper sheep were randomly distributed into three groups (n = 6 each group): group 1, RME with corticotomy on the buccal and palatal sides; group 2, conventional RME treatment; and group 3, no treatment. Post-RME, trabecular bone microstructure and new bone formation were evaluated by using microcomputed tomography (microCT) and histomorphometry after a 4- or 12-week retention period. Intergroup differences in bone quality and bone remodeling were analyzed by using two-way analysis of variance with Bonferroni post-hoc test.
Results: The bone volume fraction (bone volume [BV]/total volume [TV]) values relative to the control in groups 1 and 2 were 54.40% to 69.88% after the 4-week retention period and returned to approximately 80% after the 12-week retention period. The pooled BV/TV values of the banded teeth in groups 1 and 2 were significantly lower than those of the control after the 4-week retention period (p < 0.05). However, after the 12-week retention period, the pooled BV/TV values in group 2 were significantly lower than those in groups 1 and 3 (p < 0.05). Histomorphological analysis showed that the new bone formation area in group 1 was approximately two to three times of those in group 2 and control.
Conclusions: Corticotomy significantly enhanced the restoration of bone quality after the retention periods for banded teeth. This benefit might result from the increased new bone formation after corticotomy.