Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Zainol FD, Thammawongsa N, Mitatha S, Ali J, Yupapin P
    Artif Cells Nanomed Biotechnol, 2013 Dec;41(6):368-75.
    PMID: 23305176 DOI: 10.3109/21691401.2012.759124
    A novel design of nerve communications and networks using the coupling effects between bio-cells and optical dipoles is proposed. The electrical signals are coupled to the dipoles and cells which propagate within the optical networks for long distance without any electromagnetic interference. Results have shown that the use of optical spins in the spin networks, referred as Spinnet, can be formed. This technique can be used to improve the nerve communication performance. It is fabricated as a nano-biotic circuit system, and has great potential for future disability applications and diagnosis of the links of nerves across the dead cells.
    Matched MeSH terms: Cell Communication*
  2. Sudi S, Thomas FM, Daud SK, Ag Daud DM, Sunggip C
    Molecules, 2023 Feb 23;28(5).
    PMID: 36903347 DOI: 10.3390/molecules28052102
    Myocardial remodelling is a molecular, cellular, and interstitial adaptation of the heart in response to altered environmental demands. The heart undergoes reversible physiological remodelling in response to changes in mechanical loading or irreversible pathological remodelling induced by neurohumoral factors and chronic stress, leading to heart failure. Adenosine triphosphate (ATP) is one of the potent mediators in cardiovascular signalling that act on the ligand-gated (P2X) and G-protein-coupled (P2Y) purinoceptors via the autocrine or paracrine manners. These activations mediate numerous intracellular communications by modulating the production of other messengers, including calcium, growth factors, cytokines, and nitric oxide. ATP is known to play a pleiotropic role in cardiovascular pathophysiology, making it a reliable biomarker for cardiac protection. This review outlines the sources of ATP released under physiological and pathological stress and its cell-specific mechanism of action. We further highlight a series of cardiovascular cell-to-cell communications of extracellular ATP signalling cascades in cardiac remodelling, which can be seen in hypertension, ischemia/reperfusion injury, fibrosis, hypertrophy, and atrophy. Finally, we summarize current pharmacological intervention using the ATP network as a target for cardiac protection. A better understanding of ATP communication in myocardial remodelling could be worthwhile for future drug development and repurposing and the management of cardiovascular diseases.
    Matched MeSH terms: Cell Communication
  3. Ali NB, Abdull Razis AF, Ooi J, Chan KW, Ismail N, Foo JB
    Molecules, 2022 Jun 20;27(12).
    PMID: 35745063 DOI: 10.3390/molecules27123941
    The way cells communicate is not fully understood. However, it is well-known that extracellular vesicles (EVs) are involved. Researchers initially thought that EVs were used by cells to remove cellular waste. It is now clear that EVs function as signaling molecules released by cells to communicate with one another, carrying a cargo representing the mother cell. Furthermore, these EVs can be found in all biological fluids, making them the perfect non-invasive diagnostic tool, as their cargo causes functional changes in the cells upon receiving, unlike synthetic drug carriers. EVs last longer in circulation and instigate minor immune responses, making them the perfect drug carrier. This review sheds light on the latest development in EVs isolation, characterization and, application as therapeutic cargo, novel drug loading techniques, and diagnostic tools. We also address the advancement in plant-derived EVs, their characteristics, and applications; since plant-derived EVs only recently gained focus, we listed the latest findings. Although there is much more to learn about, EV is a wide field of research; what scientists have discovered so far is fascinating. This paper is suitable for those new to the field seeking to understand EVs and those already familiar with it but wanting to review the latest findings.
    Matched MeSH terms: Cell Communication
  4. Yunos NY, Tan WS, Koh CL, Sam CK, Mohamad NI, Tan PW, et al.
    Sensors (Basel), 2014;14(7):11595-604.
    PMID: 24984061 DOI: 10.3390/s140711595
    Quorum sensing (QS) is a bacterial cell-to-cell communication system controlling QS-mediated genes which is synchronized with the population density. The regulation of specific gene activity is dependent on the signaling molecules produced, namely N-acyl homoserine lactones (AHLs). We report here the identification and characterization of AHLs produced by bacterial strain ND07 isolated from a Malaysian fresh water sample. Molecular identification showed that strain ND07 is clustered closely to Pseudomonas cremoricolorata. Spent culture supernatant extract of P. cremoricolorata strain ND07 activated the AHL biosensor Chromobacterium violaceum CV026. Using high resolution triple quadrupole liquid chromatography-mass spectrometry, it was confirmed that P. cremoricolorata strain ND07 produced N-octanoyl-L-homoserine lactone (C8-HSL) and N-decanoyl-L-homoserine lactone (C10-HSL). To the best of our knowledge, this is the first documentation on the production of C10-HSL in P. cremoricolorata strain ND07.
    Matched MeSH terms: Cell Communication/physiology*
  5. Huang Z, Iqbal Z, Zhao Z, Liu J, Alabsi AM, Shabbir M, et al.
    J Transl Med, 2024 Dec 03;22(1):1096.
    PMID: 39627858 DOI: 10.1186/s12967-024-05900-6
    The bone marrow niche is a special microenvironment that comprises elements, including hematopoietic stem cells, osteoblasts, and endothelial cells, and helps maintain their characteristic functions. Here, we elaborate on the crosstalk between various cellular components, hematopoietic stem cells, and other cells in the bone marrow niche. We further explain the mechanism of preserving equilibrium in the bone marrow niche, which is crucial for the directional regulation of bone reconstruction and repair. Additionally, we elucidate the intercommunication among osteocytes, the regulation of osteoblast maturation and activation by lymphocytes, the deficiency of megakaryocytes that can markedly impair osteoblast formation, and the mechanism of interaction between macrophages and mesenchymal stem cells in the bone marrow niche. Finally, we discussed the new immunotherapies for bone tumors in the BM niche. In this review, we aimed to provide a candid overview of the crosstalk among bone marrow niche cells and to highlight new concepts underlying the unknown mechanisms of hematopoiesis and bone reconstruction. Thus, this review may provide a more comprehensive understanding of the role of these niche cells in improving hematopoietic function and help identify their therapeutic potential for different diseases in the future.
    Matched MeSH terms: Cell Communication*
  6. Gan HY, Gan HM, Tarasco AM, Busairi NI, Barton HA, Hudson AO, et al.
    Genome Announc, 2014;2(6).
    PMID: 25377711 DOI: 10.1128/genomeA.01133-14
    Here, we report the whole-genome sequences and annotation of five oligotrophic bacteria from two sites within the Lechuguilla Cave in the Carlsbad Caverns National Park, NM. Three of the five genomes contain an acyl-homoserine lactone signal synthase ortholog (luxI) that is involved in cell-to-cell communication via quorum sensing.
    Matched MeSH terms: Cell Communication
  7. Huang X, Shan L, Cheng K, Weng W
    ACS Biomater Sci Eng, 2017 Dec 11;3(12):3254-3260.
    PMID: 33445368 DOI: 10.1021/acsbiomaterials.7b00551
    The topography at the micro/nanoscale level for biomaterial surfaces has been thought to play vital roles in their interactions with cells. However, discovering the interdisciplinary mechanisms underlying how cells respond to micro-nanostructured topography features still remains a challenge. In this work, ∼37 μm 3D printing used titanium microspheres and their further hierarchical micro-nanostructured spheres through hydrothermal treatment were adopted to construct typical model surface topographies to study the preosteoblastic cell responses (adhesion, proliferation, and differentiation). We here demonstrated that not only the hierarchical micro-nanostructured surface topography but also their distribution density played critical role on cell cytocompatibility. The microstructured topography feature surface with middle-density distributed titanium microspheres showed significantly enhanced cell responses, which might be attributed to the better cellular interaction due to the cell aggregates. However, the hierarchical micro-nanostructured topography surface, regardless of the distribution density of titanium microspheres, improved the cell-surface interactions because of the enhanced initial protein adsorption, thereby reducing the cell aggregates and consequently their responses. This work, therefore, provides new insights into the fundamental understanding of cell-material interactions and will have a profound impact on further designing micro-nanostructured topography surfaces to control cell responses.
    Matched MeSH terms: Cell Communication
  8. Wee JJ, Kumar S
    Genomics Inform, 2020 Dec;18(4):e39.
    PMID: 33412755 DOI: 10.5808/GI.2020.18.4.e39
    Alzheimer's disease (AD) is a chronic, progressive brain disorder that slowly destroys affected individuals' memory and reasoning faculties, and consequently, their ability to perform the simplest tasks. This study investigated the hub genes of AD. Proteins interact with other proteins and non-protein molecules, and these interactions play an important role in understanding protein function. Computational methods are useful for understanding biological problems, in particular, network analyses of protein-protein interactions. Through a protein network analysis, we identified the following top 10 hub genes associated with AD: PTGER3, C3AR1, NPY, ADCY2, CXCL12, CCR5, MTNR1A, CNR2, GRM2, and CXCL8. Through gene enrichment, it was identified that most gene functions could be classified as integral to the plasma membrane, G-protein coupled receptor activity, and cell communication under gene ontology, as well as involvement in signal transduction pathways. Based on the convergent functional genomics ranking, the prioritized genes were NPY, CXCL12, CCR5, and CNR2.
    Matched MeSH terms: Cell Communication
  9. Lee, Soo Leng, Zainal Ariff Abdul Rahman, Tsujigiwa, Hidetsugu, Takabatake, Kiyofumi, Nakano, Keisuke, Chai, Wen Lin, et al.
    Ann Dent, 2016;23(1):13-22.
    MyJurnal
    In recent years, three-dimensional (3D) in vitro cell culture models have earned great attention, especially in the field of human cancer disease modelling research as they provide a promising alternative towards the conventional two-dimensional (2D) monolayer culture of cells with improved tissue organization. In 2D cell culture systems, the complexity of cells on a planar surface does not accurately reflects the in vivo cellular microenvironment. Cells propagated in 3D cell culture model, on the other hand, exhibit physiologically relevant cell-to-cell interactions and cell-to-extracellular matrix (ECM) interactions, important in maintaining a normal homeostasis and specificity of tissues. This review gives an overview on 2D models and their limitations, followed by 3D cell culture models, their advantages, drawbacks and challenges in present perspectives. The review also highlights the dissimilarities of 2D and 3D models and the applicability of 3D models in current cancer research
    Matched MeSH terms: Cell Communication
  10. Raizulnasuha Ab Rashid, Nurhikmah Azam, Norhayati Dollah, Wan Nordiana W Abd Rahman
    MyJurnal
    The purpose of the study was to determine the effect of out-of-field photon beams radiotherapy to the cancer cell survival. In this study, HeLa and T24 cancer cells were irradiated with 6 MV and 10 MV photon beams in two different conditions, one with intercellular communication with the in-field cell and one without the communication. Cells survival was determined by clonogenic assay. In the presence of intercellular communication, the cell death was increased which indicate the presence of radiation induced bystander effects (RIBE). The effects were also dependent on the cell types and photon energy where the HeLa cells exhibit less survival compares to T24 cells and the effects were prominent at higher photon energy. This study demonstrates that the out-of-field cells in conjunction with RIBE plays important roles in the cells response towards megavoltage photon beam radiation therapy.
    Matched MeSH terms: Cell Communication
  11. Saadh MJ, Mohamed AH, Almoyad MAA, Allela OQB, Amin AH, Malquisto AA, et al.
    Cell Biochem Funct, 2024 Mar;42(2):e3962.
    PMID: 38491792 DOI: 10.1002/cbf.3962
    Colorectal cancer (CRC) is one of the main causes of cancer-related deaths. However, the surgical control of the CRC progression is difficult, and in most cases, the metastasis leads to cancer-related mortality. Mesenchymal stem/stromal cells (MSCs) with potential translational applications in regenerative medicine have been widely researched for several years. MSCs could affect tumor development through secreting exosomes. The beneficial properties of stem cells are attributed to their cell-cell interactions as well as the secretion of paracrine factors in the tissue microenvironment. For several years, exosomes have been used as a cell-free therapy to regulate the fate of tumor cells in a tumor microenvironment. This review discusses the recent advances and current understanding of assessing MSC-derived exosomes for possible cell-free therapy in CRC.
    Matched MeSH terms: Cell Communication
  12. Othman N, Jamal R, Abu N
    Front Immunol, 2019;10:2103.
    PMID: 31555295 DOI: 10.3389/fimmu.2019.02103
    Exosomes, a category of small lipid bilayer extracellular vesicles that are naturally secreted by many cells (both healthy and diseased), carry cargo made up of proteins, lipids, DNAs, and RNAs; all of which are functional when transferred to their recipient cells. Numerous studies have demonstrated the powerful role that exosomes play in the mediation of cell-to-cell communication to induce a pro-tumoral environment to encourage tumor progression and survival. Recently, considerable interest has developed in regard to the role that exosomes play in immunity; with studies demonstrating the ability of exosomes to either metabolically alter immune players such as dendritic cells, T cells, macrophages, and natural killer cells. In this review, we summarize the recent literature on the function of exosomes in regulating a key process that has long been associated with the progression of cancer-inflammation and immunity.
    Matched MeSH terms: Cell Communication
  13. Mutha NVR, Mohammed WK, Krasnogor N, Tan GYA, Wee WY, Li Y, et al.
    Sci Rep, 2019 05 21;9(1):7664.
    PMID: 31113978 DOI: 10.1038/s41598-019-43979-w
    Many oral bacteria form macroscopic clumps known as coaggregates when mixed with a different species. It is thought that these cell-cell interactions are critical for the formation of mixed-species biofilms such as dental plaque. Here, we assessed the impact of coaggregation between two key initial colonizers of dental plaque, Streptococcus gordonii and Veillonella parvula, on gene expression in each partner. These species were shown to coaggregate in buffer or human saliva. To monitor gene regulation, coaggregates were formed in human saliva and, after 30 minutes, whole-transcriptomes were extracted for sequencing and Dual RNA-Seq analysis. In total, 272 genes were regulated in V. parvula, including 39 genes in oxidoreductase processes. In S. gordonii, there was a high degree of inter-sample variation. Nevertheless, 69 genes were identified as potentially regulated by coaggregation, including two phosphotransferase system transporters and several other genes involved in carbohydrate metabolism. Overall, these data indicate that responses of V. parvula to coaggregation with S. gordonii are dominated by oxidative stress-related processes, whereas S. gordonii responses are more focussed on carbohydrate metabolism. We hypothesize that these responses may reflect changes in the local microenvironment in biofilms when S. gordonii or V. parvula immigrate into the system.
    Matched MeSH terms: Cell Communication
  14. Che Shaffi S, Hairuddin ON, Mansor SF, Syafiq TMF, Yahaya BH
    Tissue Eng Regen Med, 2024 Jun;21(4):513-527.
    PMID: 38598059 DOI: 10.1007/s13770-024-00634-4
    BACKGROUND: Mesenchymal stem cells (MSCs) have undergone extensive investigation for their potential therapeutic applications, primarily attributed to their paracrine activity. Recently, researchers have been exploring the therapeutic potential of extracellular vesicles (EVs) released by MSCs.

    METHODS: MEDLINE/PubMed and Google scholar databases were used for the selection of literature. The keywords used were mesenchymal stem cells, extracellular vesicles, clinical application of EVs and challenges EVs production.

    RESULTS: These EVs have demonstrated robust capabilities in transporting intracellular cargo, playing a critical role in facilitating cell-to-cell communication by carrying functional molecules, including proteins, RNA species, DNAs, and lipids. Utilizing EVs as an alternative to stem cells offers several benefits, such as improved safety, reduced immunogenicity, and the ability to traverse biological barriers. Consequently, EVs have emerged as an increasingly attractive option for clinical use.

    CONCLUSION: From this perspective, this review delves into the advantages and challenges associated with employing MSC-EVs in clinical settings, with a specific focus on their potential in treating conditions like lung diseases, cancer, and autoimmune disorders.

    Matched MeSH terms: Cell Communication
  15. Jolly JJ, Chin KY, Farhana MFN, Alias E, Chua KH, Hasan WNW, et al.
    Iran J Med Sci, 2018 Mar;43(2):208-213.
    PMID: 29749990
    Osteoblasts (OBs) and osteoclasts (OCs) are 2 major groups of bone cells. Their cell-to-cell interactions are important to ensure the continuity of the bone-remodeling process. Therefore, the present study was carried out to optimize an OB/OC co-culture system utilizing the human OB cell line hFOB 1.19 and OCs extracted from peripheral blood mononuclear cells (PBMNCs). It was a 2-step procedure, involving the optimization of the OB culture and the co-culture of the OBs with PBMNCs at an optimum ratio. Firstly, pre-OBs were cultured to 90% confluency and the time required for differentiation was determined. OB differentiation was determined using the van Gieson staining to detect the presence of collagen and Alizarin Red for calcium. Secondly, OBs and OCs were co-cultured at the ratios of 1 OC: 1 OB, 1 OC: 4 OBs, 2 OCs: 1 OB, and 1 OC: 2 OBs. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect the differentiation of the OCs. The results showed that collagen was present on day 1, whereas calcium was detected as early as day 3. Based on the result of TRAP staining, 1 OC: 2 OBs was taken as the most appropriate ratio. No macrophage colony-stimulating factor and receptor activator of the nuclear factor-κB ligand were added because they were provided by the OBs. In conclusion, these optimization processes are vital as they ensure the exact time point and ratio of the OB/OC co-culture in order to produce a reliable and reproducible co-culture system.
    Matched MeSH terms: Cell Communication
  16. Musa M, Ouaret D, Bodmer WF
    Anticancer Res, 2020 Nov;40(11):6063-6073.
    PMID: 33109544 DOI: 10.21873/anticanres.14627
    BACKGROUND/AIM: Interactions between colorectal cancer (CRC) cells and myofibroblasts govern many processes such as cell growth, migration, invasion and differentiation, and contribute to CRC progression. Robust experimental tests are needed to investigate the nature of these interactions for future anticancer studies. The purpose of the study was to design and validate in vitro assays for studying the communication between myofibroblasts and CRC epithelial cell lines.

    MATERIALS AND METHODS: The influence of co-culture of myofibroblasts and CRC cell lines is discussed using various in vitro assays including direct co-culture, transwell assays, Matrigel-based differentiation and cell invasion experiments.

    RESULTS: The results from these in vitro assays clearly demonstrated various aspects of the crosstalk between myofibroblasts and CRC cell lines, which include cell growth, differentiation, migration and invasion.

    CONCLUSION: The reported in vitro assays provide a basis for investigating the factors that control the myofibroblast-epithelial cell interactions in CRC in vivo.

    Matched MeSH terms: Cell Communication/drug effects*
  17. Chan SC, Mok SY, Ng DW, Goh SY
    Biol Cybern, 2017 Dec;111(5-6):459-472.
    PMID: 29128889 DOI: 10.1007/s00422-017-0740-z
    Ultra-slow cortical oscillatory activity of 1-100 mHz has been recorded in human by electroencephalography and in dissociated cultures of cortical rat neurons, but the underlying mechanisms remain to be elucidated. This study presents a computational model of ultra-slow oscillatory activity based on the interaction between neurons and astrocytes. We predict that the frequency of these oscillations closely depends on activation of astrocytes in the network, which is reflected by oscillations of their intracellular calcium concentrations with periods between tens of seconds and minutes. An increase of intracellular calcium in astrocytes triggers the release of adenosine triphosphate from these cells which may alter transmission at nearby synapses by increasing or decreasing neurotransmitter release. These results provide theoretical support for the emerging awareness of astrocytes as active players in the regulation of neural activity and identify neuron-astrocyte interactions as a potential primary mechanism for the emergence of ultra-slow cortical oscillations.
    Matched MeSH terms: Cell Communication/physiology*
  18. Kobayashi A, Autsavapromporn N, Ahmad TAFT, Oikawa M, Homma-Takeda S, Furusawa Y, et al.
    Radiat Prot Dosimetry, 2019 May 01;183(1-2):142-146.
    PMID: 30535060 DOI: 10.1093/rpd/ncy249
    Bi-directional signaling involved in radiation-induced bystander effect (RIBE) between irradiated carcinoma cells and their surrounding non-irradiated normal cells is relevant to radiation cancer therapy. Using the SPICE-NIRS microbeam, we delivered 500 protons to A549-GFP lung carcinoma cells, stably expressing H2B-GFP, which were co-cultured with normal WI-38 cells. The level of γ-H2AX, a marker for DNA double-strand breaks (DSB), was subsequently measured up to 24-h post-irradiation in both targeted and bystander cells. As a result, inhibition of gap junction intercellular communication (GJIC) attenuated DSB repair in targeted A549-GFP cells, and suppressed RIBE in bystander WI-38 cells but not in distant A549-GFP cells. This suggests that GJIC plays a two-way role through propagating DNA damage effect between carcinoma to normal cells and reversing the bystander signaling, also called 'rescue effect' from bystander cells to irradiated cells, to enhance the DSB repair in targeted cells.
    Matched MeSH terms: Cell Communication/radiation effects*
  19. Ooi YY, Ramasamy R, Rahmat Z, Subramaiam H, Tan SW, Abdullah M, et al.
    Int Immunopharmacol, 2010 Dec;10(12):1532-40.
    PMID: 20850581 DOI: 10.1016/j.intimp.2010.09.001
    The immunoregulatory properties of mesenchymal stem cells (MSC) have been demonstrated on a wide range of cells. Here, we describe the modulatory effects of mouse bone marrow-derived MSC on BV2 microglia proliferation rate, nitric oxide (NO) production and CD40 expression. Mouse bone marrow MSC were co-cultured with BV2 cells at various seeding density ratios and activated with lipopolysaccharide (LPS). We show that MSC exert an anti-proliferative effect on microglia and are potent producers of NO when stimulated by soluble factors released by LPS-activated BV2. MSC suppressed proliferation of both untreated and LPS-treated microglia in a dose-dependent manner, significantly reducing BV2 proliferation at seeding density ratios of 1:0.2 and 1:0.1 (pcells at different ratios revealed interesting dynamics in NO production. A high number of MSC significantly increases NO in co-cultures whilst a lower number reduces NO. The increased NO levels in co-cultures may be MSC-derived, as we also show that activated BV2 cells stimulate MSC to produce NO. Cell-cell interaction is not a requirement for this effect as soluble factors released by activated BV2 cells alone do stimulate MSC to produce high levels of NO. Although NO is implicated as a mediator for T cell proliferation, it does not appear to play a major role in the suppression of microglia proliferation. Additionally, MSC reduced the expression of the microglial co-stimulator molecule, CD40. Collectively, these regulatory effects of MSC on microglia offer insight into the potential moderating properties of MSC on inflammatory responses within the CNS.
    Matched MeSH terms: Cell Communication/immunology
  20. Tan MS, Moore SC, Tabor RF, Fegan N, Rahman S, Dykes GA
    BMC Microbiol, 2016 09 15;16:212.
    PMID: 27629769 DOI: 10.1186/s12866-016-0832-2
    BACKGROUND: Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface.

    RESULTS: We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin.

    CONCLUSIONS: Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils.

    Matched MeSH terms: Cell Communication*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links