Displaying publications 1 - 20 of 27 in total

Abstract:
Sort:
  1. Lau CC, Abdullah N, Shuib AS, Aminudin N
    Food Chem, 2014 Apr 1;148:396-401.
    PMID: 24262574 DOI: 10.1016/j.foodchem.2013.10.053
    Angiotensin I-converting enzyme (ACE) inhibitors derived from foods are valuable auxiliaries to agents such as captopril. Eight highly functional ACE inhibitory peptides from the mushroom, Agaricus bisporus, were identified by LC-MS/MS. Among these peptides, the most potent ACE inhibitory activity was exhibited by AHEPVK, RIGLF and PSSNK with IC₅₀ values of 63, 116 and 129 μM, respectively. These peptides exhibited high ACE inhibitory activity after gastrointestinal digestion. Lineweaver-Burk plots suggested that AHEPVK and RIGLF act as competitive inhibitors against ACE, whereas PSSNK acts as a non-competitive inhibitor. Mushrooms can be a good component of dietary supplement due to their readily available source and, in addition, they rarely cause food allergy. Compared to ACE inhibitory peptides isolated from other edible mushrooms, AHEPVK, RIGLF and PSSNK have lower IC₅₀ values. Therefore, these peptides may serve as an ideal ingredient in the production of antihypertensive supplements.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/isolation & purification
  2. Mohtar M, Johari SA, Li AR, Isa MM, Mustafa S, Ali AM, et al.
    Curr Microbiol, 2009 Aug;59(2):181-6.
    PMID: 19475447 DOI: 10.1007/s00284-009-9416-9
    Increased prevalence of methicillin-resistant Staphylococcus aureus (MRSA) has become a major threat to the health sector worldwide due to their virulence, limited therapeutic options and their distribution in both hospital and community settings. Discovery and development of new anti-MRSA agents as alternatives to the very few antibiotics left in the armamentarium are, thus, urgently required. Recently, an efflux mechanism in MRSA has been identified as one of the main contributors of resistance towards various structurally unrelated antibiotics. The potential of reserpine (a phytoalkaloid) as efflux pump inhibitor (EPI) against various microbes remains limited as the concentration needed for inhibition is toxic to humans. This study therefore aimed to evaluate 13 alkaloid compounds as potential inhibitory agents and/or potential EPIs against a panel of three MRSA isolates which not only differ in their susceptibility to vancomycin (amongst the last drugs available to treat serious MRSA infection), but also exhibited active efflux activity. Results indicated berberine's moderate inhibitiory activity against two MRSA isolates scoring a minimum inhibitory concentration (MIC) value of 125 microg/ml. Notable efflux inhibitory activity (ranging from two- to eightfold Ethidium Bromide MIC reduction) meanwhile was detected from quinine, piperine and harmaline using reserpine as the positive control. Findings from this study support the opinion that a vast number of potential phytocompounds with pharmacological potential await discovery. Therapeutic application of these compounds, however, warrants further investigation to ascertain their pharmacodynamics and safety aspects.
    Matched MeSH terms: Enzyme Inhibitors/isolation & purification
  3. Mudgil P, Baby B, Ngoh YY, Vijayan R, Gan CY, Maqsood S
    J Dairy Sci, 2019 Dec;102(12):10748-10759.
    PMID: 31548068 DOI: 10.3168/jds.2019-16520
    Novel bioactive peptides from camel milk protein hydrolysates (CMPH) were identified and tested for inhibition of cholesterol esterase (CEase), and their possible binding mechanisms were elucidated by molecular docking. Papain-generated CMPH showed the highest degree of hydrolysis. All CMPH produced upon enzymatic degradation demonstrated a dramatic enhancement of CEase inhibition compared with intact camel milk proteins, with papain-generated hydrolysate P9 displaying the highest inhibition. Peptide identification and their modeling through PepSite 2 revealed that among 20 potential bioactive peptides in alcalase-generated hydrolysate A9, only 3 peptides, with sequences KFQWGY, SQDWSFY, and YWYPPQ, showed the highest binding toward CEase catalytic sites. Among 43 peptides in 9-h papain-generated hydrolysate P9, 4 peptides were found to be potent CEase inhibitors. Molecular docking revealed that WPMLQPKVM, CLSPLQMR, MYQQWKFL, and CLSPLQFR from P9 hydrolysates were able to bind to the active site of CEase with good docking scores and molecular mechanics-generalized born surface area binding energies. Overall, this is the first study reporting CEase inhibitory potential of peptides generated from milk proteins.
    Matched MeSH terms: Enzyme Inhibitors/isolation & purification*
  4. Zhou PJ, Wu XY, Zhao ZY, Zang Y, Sun ZS, Li YL, et al.
    Phytochemistry, 2025 Jan;229:114309.
    PMID: 39427693 DOI: 10.1016/j.phytochem.2024.114309
    Parrotia subaequalis, an endangered Tertiary relict tree native to China and a member of the Hamamelidaceae family, is one of several host plant species in this family that exhibit unique ecological habits, such as gall formation. Tree galls are the results of complex interactions between gall-inducing insects and their host plant organs. The formation of galls may serve to protect other regions of the plant from potential damage, often through the production of phytoalexins. In this study, a preliminary investigation was carried out on the metabolites of the 90% MeOH extract derived from the closed spherical galls on the twigs of P. subaequalis. Consequently, nine previously undescribed benzofuran-type and dibenzofuran-type phytoalexins (parrotiagallols A-I, 1-9, respectively) were isolated and characterized, along with several known miscellaneous metabolites (10-17). Their chemical structures and absolute configurations were elucidated using spectroscopic methods, a combination of calculated and experimental electronic circular dichroism data, and single crystal X-ray diffraction analyses. Among these compounds, 1 and 2 are identified as neolignan derivatives, while compounds 3-5 are classified as 9,10-dinorneolignans. Compound 6 represents a rare 2,3-seco-neolignan, and compounds 7-9 are dihydroxy-dimethyl-dibenzofuran derivatives. Parrotiagallol A (1) showed considerable antibacterial activity against Staphylococcus aureus, with an MIC value of 14 μM. Additionally, parrotiagallol E (5) and methyl gallate (17) exhibited inhibitory effects against ATP-citrate lyase (ACL), a potential therapeutic target for hyperlipidemia, with IC50 values of 5.1 and 9.8 μM, respectively. The findings underscore that galls not only serve as physical defense barriers but also benefit from the chemical defense system of the host plants. These insights provide avenues for exploring potential new therapeutic agents for S. aureus infections and ACL-related diseases, while also promoting scientific conservation strategies for P. subaequalis.
    Matched MeSH terms: Enzyme Inhibitors/isolation & purification
  5. Yea CS, Ebrahimpour A, Hamid AA, Bakar J, Muhammad K, Saari N
    Food Funct, 2014 May;5(5):1007-16.
    PMID: 24658538 DOI: 10.1039/c3fo60667h
    Hypertension is one of the major causes of cardiovascular-related diseases, which is highly associated with angiotensin-I-converting enzyme (ACE) activity and oxidative stress. In this study, winged bean seed (WBS), a potential source of protein, was utilised for the production of bifunctional proteolysate and biopeptides with ACE inhibitory and antioxidative properties. An enzymatic approach was applied, coupled with pretreatment of shaking and centrifuging techniques to remove endogenous ACE inhibitors prior to proteolysis. ACE inhibition reached its highest activity, 78.5%, after 12 h proteolysis while antioxidative activities, determined using assays involving DPPH˙ radical scavenging activity and metal ion-chelating activity, reached peaks of 65.0% and 65.7% at 8 h and 14 h, respectively. The said bioactivities were proposed to share some common structural requirements among peptides. A two-dimensional approach was employed for characterisation of effective peptides based on hydrophobicity, using RP-HPLC, and isoelectric property, using isoelectric focusing technique. Results revealed that acidic and basic peptides with partially higher hydrophobicity provided higher ACE inhibition activity than did neutral peptides. Finally, by using Q-TOF mass spectrometry, two peptide sequences (YPNQKV and FDIRA) with ACE inhibitory and antioxidative activities were successfully matched with a database. This study indicates that the WBS proteolysate can be a potential bifunctional food ingredient as the identified biopeptides demonstrated both ACE inhibitory and antioxidative activities in vitro.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/isolation & purification
  6. Lau CC, Abdullah N, Shuib AS
    BMC Complement Altern Med, 2013 Nov 11;13:313.
    PMID: 24215325 DOI: 10.1186/1472-6882-13-313
    BACKGROUND: Angiotensin I-converting enzyme (ACE) inhibitors have been reported to reduce mortality in patients with hypertension. Compared to chemosynthetic drugs, ACE inhibitors derived from natural sources such as food proteins are believed to be safer for consumption and to have fewer adverse effects. Some edible mushrooms have been reported to significantly reduce blood pressure after oral administration. In addition, mushrooms are known to be rich in protein content. This makes them a potential source of ACE inhibitory peptides. Hence, the objective of the current study was to isolate and characterise ACE inhibitory peptides from an edible mushroom, Pleurotus cystidiosus.

    METHODS: ACE inhibitory proteins were isolated from P. cystidiosus based on the bioassay guided purification steps, i.e. ammonium sulphate precipitation, reverse phase high performance liquid chromatography and size exclusion chromatography. Active fraction was then analysed by LC-MS/MS and potential ACE inhibitory peptides identified were chemically synthesized. Effect of in vitro gastrointestinal digestions on the ACE inhibitory activity of the peptides and their inhibition patterns were evaluated.

    RESULTS: Two potential ACE inhibitory peptides, AHEPVK and GPSMR were identified from P. cystidiosus with molecular masses of 679.53 and 546.36 Da, respectively. Both peptides exhibited potentially high ACE inhibitory activity with IC50 values of 62.8 and 277.5 μM, respectively. SEC chromatograms and BIOPEP analysis of these peptides revealed that the peptide sequence of the hexapeptide, AHEPVK, was stable throughout gastrointestinal digestion. The pentapeptide, GPSMR, was hydrolysed after digestion and it was predicted to release a dipeptide ACE inhibitor, GP, from its precursor. The Lineweaver-Burk plot of AHEPVK showed that this potent and stable ACE inhibitor has a competitive inhibitory effect against ACE.

    CONCLUSION: The present study indicated that the peptides from P. cystidiosus could be potential ACE inhibitors. Although these peptides had lower ACE inhibitory activity compared to commercial antihypertensive drugs, they are derived from mushroom which could be easily obtained and should have no side effects. Further in vivo studies can be carried out to reveal the clear mechanism of ACE inhibition by these peptides.

    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/isolation & purification
  7. Mohamad Ansor N, Abdullah N, Aminudin N
    PMID: 24093919 DOI: 10.1186/1472-6882-13-256
    Ganoderma lucidum has been purported as a potent remedy in the treatment and prevention of several ailments, including hypertension. This study aimed to explore the anti-ACE potential of protein fractions from the mycelia of G. lucidum.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/isolation & purification
  8. Siow HL, Gan CY
    Food Chem, 2013 Dec 15;141(4):3435-42.
    PMID: 23993504 DOI: 10.1016/j.foodchem.2013.06.030
    Antioxidative and antihypertensive bioactive peptides were successfully derived from Parkia speciosa seed using alcalase. The effects of temperature (25 and 50 °C), substrate-to-enzyme ratio (S/E ratio, 20 and 50), and incubation time (0.5, 1, 2 and 5h) were evaluated based on 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and angiotensin-converting enzyme (ACE) assays. Bioactive peptide extracted at a hydrolysis condition of: temperature=50 °C, S/E ratio=50 and incubation time=2h, exhibited the highest DPPH radical scavenging activity (2.9 mg GAE/g), reducing power (11.7 mM) and %ACE-inhibitory activity (80.2%). The sample was subsequently subjected to fractionation and the peptide fraction of <10 kDa showed the strongest bioactivities. A total of 29 peptide sequences from peptide fraction of <10 kDa were identified as the most potent contributors to the bioactivities. These novel bioactive peptides were suggested to be beneficial to nutraceutical and food industries.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/isolation & purification
  9. Mohamed EA, Siddiqui MJ, Ang LF, Sadikun A, Chan SH, Tan SC, et al.
    PMID: 23039079 DOI: 10.1186/1472-6882-12-176
    In the present study, we tested a 50% ethanolic extract of Orthosiphon stamineus plants and its isolated bioactive compound with respect to their α-glucosidase and α-amylase inhibitory activities.
    Matched MeSH terms: Enzyme Inhibitors/isolation & purification
  10. Nipun TS, Khatib A, Ahmed QU, Redzwan IE, Ibrahim Z, Khan AYF, et al.
    Molecules, 2020 Sep 11;25(18).
    PMID: 32932994 DOI: 10.3390/molecules25184161
    The plant Psychotria malayana Jack belongs to the Rubiaceae family and is known in Malaysia as "meroyan sakat/salung". A rapid analytical technique to facilitate the evaluation of the P. malayana leaves' quality has not been well-established yet. This work aimed therefore to develop a validated analytical technique in order to predict the alpha-glucosidase inhibitory action (AGI) of P. malayana leaves, applying a Fourier Transform Infrared Spectroscopy (FTIR) fingerprint and utilizing an orthogonal partial least square (OPLS). The dried leaf extracts were prepared by sonication of different ratios of methanol-water solvent (0, 25, 50, 75, and 100% v/v) prior to the assessment of alpha-glucosidase inhibition (AGI) and the following infrared spectroscopy. The correlation between the biological activity and the spectral data was evaluated using multivariate data analysis (MVDA). The 100% methanol extract possessed the highest inhibitory activity against the alpha-glucosidase (IC50 2.83 ± 0.32 μg/mL). Different bioactive functional groups, including hydroxyl (O-H), alkenyl (C=C), methylene (C-H), carbonyl (C=O), and secondary amine (N-H) groups, were detected by the multivariate analysis. These functional groups actively induced the alpha-glucosidase inhibition effect. This finding demonstrated the spectrum profile of the FTIR for the natural herb P. malayana Jack, further confirming its medicinal value. The developed validated model can be used to predict the AGI of P. malayana, which will be useful as a tool in the plant's quality control.
    Matched MeSH terms: Enzyme Inhibitors/isolation & purification
  11. Evaristus NA, Wan Abdullah WN, Gan CY
    Peptides, 2018 04;102:61-67.
    PMID: 29510154 DOI: 10.1016/j.peptides.2018.03.001
    The potential of N. lappacheum and N. mutabile seed as a source of α-amylase inhibitor peptides was explored based on the local traditional practice of using the seed. Different gastro-digestive enzymes (i.e. pepsin or chymotrypsin) or a sequential digestion were used to extract the peptides. The effects of digestion time and enzyme to substrate (E:S) ratio on the α-amylase inhibitory activity were investigated. Results showed that chymotrypsin was effective in producing the inhibitor peptides from rambutan seed protein at E:S ratio 1:20 for 1 h, whereas pepsin was more effective for pulasan seed protein under the same condition. A total of 20 and 31 novel inhibitor peptides were identified, respectively. These peptides could bind with the subsites of α-amylase (i.e. Trp58, Trp59, Tyr62, Asp96, Arg195, Asp197, Glu233, His299, Asp300, and His305) and formed a sliding barrier that preventing the formation of enzyme/substrate intermediate leading to lower α-amylase activity.
    Matched MeSH terms: Enzyme Inhibitors/isolation & purification
  12. Ado MA, Abas F, Mohammed AS, Ghazali HM
    Molecules, 2013;18(12):14651-69.
    PMID: 24287996 DOI: 10.3390/molecules181214651
    Plants that help in slowing down the digestion of triacylglycerols (TAGs) in the pancreas and small intestine of humans play an important role in the reduction of obesity. On the other hand, there may be plants or plant parts that stimulate intestinal lipolytic activity, thus contributing to greater TAG assimilation. The aim of this study was to evaluate the aqueous methanolic extracts of ninety eight (98) medicinal, herbal and aquatic plant materials from Malaysia for their effect on porcine pancreatic lipase (PPL) activity and to identify the structure of an anti-lipase compound from one of the sources. The degree of inhibition was also quantified as relative to orlistat activity against PPL (orlistat equivalents). Results revealed that while 19.4% of the extracts were found to have anti-lipase activity ≥80%, 12% were actually found to promote PPL activity. Twenty two percent (22.4%) exhibited moderate inhibition (41%-80%) and 2% were neutral toward PPL activity. The ripe fruit of Averrhoa carambola and the leaves of Archidendron jiringa (Jack) I.C Nielsen L. (jering), Cynometra cauliflora (nam-nam) and Aleurites moluccana (L.) Willd (candle nut/buah keras) had the highest (100%) anti-lipase activity and are equivalent to 0.11 µg orlistat/mL. Plants that stimulated lipase activity included Pimpinella anisum L. (aniseed/jintan manis), activating the enzyme by 186.5%. Kaempferol 3-O-rhamnoside was isolated from the ethyl acetate fraction of C. cauliflora leaves and found to be an active lipase inhibitor. The structure was elucidated using 1H-NMR, 13C-NMR and 2D-NMR analyses.
    Matched MeSH terms: Enzyme Inhibitors/isolation & purification
  13. Teo CY, Shave S, Chor AL, Salleh AB, Rahman MB, Walkinshaw MD, et al.
    BMC Bioinformatics, 2012;13 Suppl 17:S4.
    PMID: 23282142 DOI: 10.1186/1471-2105-13-S17-S4
    BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease with unknown etiology. Anticitrullinated protein autoantibody has been documented as a highly specific autoantibody associated with RA. Protein arginine deiminase type 4 (PAD4) is the enzyme responsible for catalyzing the conversion of peptidylarginine into peptidylcitrulline. PAD4 is a new therapeutic target for RA treatment. In order to search for inhibitors of PAD4, structure-based virtual screening was performed using LIDAEUS (Ligand discovery at Edinburgh university). Potential inhibitors were screened experimentally by inhibition assays.

    RESULTS: Twenty two of the top-ranked water-soluble compounds were selected for inhibitory screening against PAD4. Three compounds showed significant inhibition of PAD4 and their IC50 values were investigated. The structures of the three compounds show no resemblance with previously discovered PAD4 inhibitors, nor with existing drugs for RA treatment.

    CONCLUSION: Three compounds were discovered as potential inhibitors of PAD4 by virtual screening. The compounds are commercially available and can be used as scaffolds to design more potent inhibitors against PAD4.

    Matched MeSH terms: Enzyme Inhibitors/isolation & purification
  14. Tan DC, Idris KI, Kassim NK, Lim PC, Safinar Ismail I, Hamid M, et al.
    Pharm Biol, 2019 Dec;57(1):345-354.
    PMID: 31185767 DOI: 10.1080/13880209.2019.1610462
    Context:Paederia foetida L. (Rubiaceae) is an edible plant distributed in Asian countries including Malaysia. Fresh leaves have been traditionally used as a remedy for indigestion and diarrhea. Several phytochemical studies of the leaves have been documented, but there are few reports on twigs. Objective: This study investigates the enzyme inhibition of P. foetida twig extracts and compound isolated from them. In addition, in silico molecular docking of scopoletin was investigated. Materials and methods: Plants were obtained from two locations in Malaysia, Johor (PFJ) and Pahang (PFP). Hexane, chloroform and methanol extracts along with isolated compound (scopoletin) were evaluated for their enzyme inhibition activities (10,000-0.000016 µg/mL). The separation and identification of bio-active compounds were carried out using column chromatography and spectroscopic techniques, respectively. In silico molecular docking of scopoletin with receptors (α-amylase and α-glucosidase) was carried out using AutoDock 4.2. Results: The IC50 values of α-amylase and α-glucosidase inhibition activity of PFJ chloroform extract were 9.60 and 245.6 µg/mL, respectively. PFP chloroform extract exhibited α-amylase and α-glucosidase inhibition activity (IC50 = 14.83 and 257.2 µg/mL, respectively). The α-amylase and α-glucosidase inhibitory activity of scopoletin from both locations had IC50 values of 0.052 and 0.057 µM, respectively. Discussion and conclusions: Separation of PFJ chloroform extract afforded scopoletin (1), stigmasterol (2) and γ-sitosterol (3) and the PFP chloroform extract yielded (1), (2), (3) and ergost-5-en-3-ol (4). Scopoletin was isolated from this species for the first time. In silico calculations gave a binding energy between scopoletin and α-amylase of -6.03 kcal/mol.
    Matched MeSH terms: Enzyme Inhibitors/isolation & purification
  15. Saleem H, Htar TT, Naidu R, Zengin G, Ahmad I, Ahemad N
    Nat Prod Res, 2020 Sep;34(18):2602-2606.
    PMID: 30600720 DOI: 10.1080/14786419.2018.1543684
    In this study, phytochemical composition, antioxidant, enzyme inhibition and cytotoxic activities of methanol and dichloromethane (DCM) extracts of Bougainvillea glabra (B. glabra) flowers were investigated. Methanol extract was found to have higher total bioactive contents and UHPLC-MS analysis of methanol extract revealed the presence of well-known phenolic and flavonoid compounds. Antioxidant activities were performed by radical scavenging (DPPH and ABTS), reducing power (FRAP and CUPRAC), phosphomolybdenum (TAC) and metal chelating assays. From our result, we observed that methanol extract had many antioxidant compounds. The DCM extract exhibited higher cholinesterases and α-glucosidase enzyme inhibition, while methanol extract showed significant urease inhibition. Both extracts exhibited strong to moderate cytotoxicity against MCF-7, MDA-MB-231, CaSki, DU-145 and SW-480 cancer cells with IC50 values ranging from 88.49 to 304.7 µg/mL. The findings showed the B. glabra to possess considerable antioxidant, enzyme inhibition and cytotoxic potentials and therefore has potential to discover novel bioactive molecules.
    Matched MeSH terms: Enzyme Inhibitors/isolation & purification*
  16. Abidin MHZ, Abdullah N, Abidin NZ
    Int J Med Mushrooms, 2018;20(3):283-290.
    PMID: 29717672 DOI: 10.1615/IntJMedMushrooms.2018025821
    This study evaluates the in vitro inhibition of angiotensin-converting enzyme (ACE) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA) by Pleurotus pulmonarius extracts. The protective effect on the endothelial membrane against oxidative stress through the protection of nitric oxide bioavailability, as well as inhibition of endocan expression, was evaluated using human aortic endothelial cells (HAECs). Crude cold aqueous extract exhibited the most potent inhibitory activities against ACE and HMG-CoA reductase, with 61.79% and 44.30% inhibition, respectively. It also protected the bioavailability of NO released by HAECs, with 84.88% cell viability. The crude hot water extract was the most potent in inhibiting endocan expression, with 18.61% inhibition.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/isolation & purification
  17. Hanafi MA, Hashim SN, Chay SY, Ebrahimpour A, Zarei M, Muhammad K, et al.
    Food Res Int, 2018 04;106:589-597.
    PMID: 29579964 DOI: 10.1016/j.foodres.2018.01.030
    As a protein-rich, underutilized crop, green soybean could be exploited to produce hydrolysates containing angiotensin-I converting enzyme (ACE) inhibitory peptides. Defatted green soybean was hydrolyzed using four different food-grade proteases (Alcalase, Papain, Flavourzyme and Bromelain) and their ACE inhibitory activities were evaluated. The Alcalase-generated green soybean hydrolysate showed the highest ACE inhibitory activity (IC50: 0.14 mg/mL at 6 h hydrolysis time) followed by Papain (IC50: 0.20 mg/mL at 5 h hydrolysis time), Bromelain (IC50: 0.36 mg/mL at 6 h hydrolysis time) and Flavourzyme (IC50: 1.14 mg/mL at 6 h hydrolysis time) hydrolysates. The Alcalase-generated hydrolysate was profiled based on its hydrophobicity and isoelectric point using reversed phase high performance liquid chromatography (RP-HPLC) and isoelectric point focusing (IEF) fractionators. The Alcalase-generated green soybean hydrolysate comprising of peptides EAQRLLF, PSLRSYLAE, PDRSIHGRQLAE, FITAFR and RGQVLS, revealed the highest ACE inhibitory activity of 94.19%, 99.31%, 92.92%, 101.51% and 90.40%, respectively, while their IC50 values were 878 μM, 532 μM, 1552 μM, 1342 μM and 993 μM, respectively. It can be concluded that Alcalase-digested green soybean hydrolysates could be exploited as a source of peptides to be incorporated into functional foods with antihypertensive activity.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/isolation & purification
  18. Nagappan H, Pee PP, Kee SHY, Ow JT, Yan SW, Chew LY, et al.
    Food Res Int, 2017 Sep;99(Pt 2):950-958.
    PMID: 28847432 DOI: 10.1016/j.foodres.2017.01.023
    Two Malaysian brown seaweeds, Sargassum siliquosum and Sargassum polycystum were first extracted using methanol to get the crude extract (CE) and further fractionated to obtain fucoxanthin-rich fraction (FRF). Samples were evaluated for their phenolic, flavonoid, and fucoxanthin contents, as well as their inhibitory activities towards low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), α-amylase, and α-glucosidase. In LDL oxidation assay, an increasing trend in antioxidant activity was observed as the concentration of FRF (0.04-0.2mg/mL) and CE (0.2-1.0mg/mL) increased, though not statistically significant. As for serum oxidation assay, significant decrease in antioxidant activity was observed as concentration of FRF increased, while CE showed no significant difference in inhibitory activity across the concentrations used. The IC50 values for ACE inhibitory activity of CE (0.03-0.42mg/mL) were lower than that of FRF (0.94-1.53mg/mL). When compared to reference drug Voglibose (IC50 value of 0.61mg/mL) in the effectiveness in inhibiting α-amylase, CE (0.58mg/mL) gave significantly lower IC50 values while FRF (0.68-0.71mg/mL) had significantly higher IC50 values. The α-glucosidase inhibitory activity of CE (IC50 value of 0.57-0.69mg/mL) and FRF (IC50 value of 0.50-0.53mg/mL) were comparable to that of reference drug (IC50 value of 0.54mg/mL). Results had shown the potential of S. siliquosum and S. polycystum in reducing cardiovascular diseases related risk factors following their inhibitory activities on ACE, α-amylase and α-glucosidase. In addition, it is likelihood that FRF possessed antioxidant activity at low concentration level.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/isolation & purification
  19. Tan ML, Lim LE
    Drug Chem Toxicol, 2015;38(3):241-53.
    PMID: 25156015 DOI: 10.3109/01480545.2014.947504
    Andrographis paniculata (Burm.f.) Nees is a popular medicinal plant and its components are used in various traditional product preparations. However, its herb-drug interactions risks remain unclear. This review specifically discusses the various published studies carried out to evaluate the effects of Andrographis paniculata (Burm.f.) Nees plant extracts and diterpenoids on the CYP450 metabolic enzyme and if the plant components pose a possible herb-drug interaction risk. Unfortunately, the current data are insufficient to indicate if the extracts or diterpenoids can be labeled as in vitro CYP1A2, CYP2C9 or CYP3A4 inhibitors. A complete CYP inhibition assay utilizing human liver microsomes and the derivation of relevant parameters to predict herb-drug interaction risks may be necessary for these isoforms. However, based on the current studies, none of the extracts and diterpenoids exhibited CYP450 induction activity in human hepatocytes or human-derived cell lines. It is crucial that a well-defined experimental design is needed to make a meaningful herb-drug interaction prediction.
    Matched MeSH terms: Cytochrome P-450 Enzyme Inhibitors/isolation & purification
  20. Pan Y, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, Pook PC, et al.
    J Ethnopharmacol, 2010 Jul 20;130(2):275-83.
    PMID: 20457244 DOI: 10.1016/j.jep.2010.05.002
    ETHNOPHARMACOLOGICAL RELEVANCE: Centella asiatica (CA) has been widely cultivated as a vegetable or spice in China, Southeast Asia, India, Sri Lanka, Africa, and Oceanic countries and traditionally used for wound healing and maintaining normal blood pressure.

    AIM OF THE STUDY: The present study was carried out to examine the potential modulatory effects of three commercially available active components (asiaticoside, asiatic acid and madecassic acid) and four extracts (aqueous, ethanol, dichloromethane and hexane) of CA on three major cDNA-expressed human cytochrome P450 (CYP) isoforms.

    MATERIALS AND METHODS: High-performance liquid chromatography (HPLC)-based enzyme assays, namely tolbutamide 4-methyhydroxylase, dextromethorphan O-demethylase and testosterone 6beta-hydroxylase assays were developed to probe activities of CYP2C9, CYP2D6 and CYP3A4, respectively. Probe substrates were incubated with or without each active component and extract for each isoform, followed by examination of the kinetics parameters, IC(50) and K(i), to characterize modulatory effects.

    RESULTS: CYP2C9 was more susceptible to inhibitory effects by CA extracts compared to CYP2D6 and CYP3A4. Moderate degree of inhibition was observed in ethanol (K(i)=39.1 microg/ml) and dichloromethane (K(i)=26.6 microg/ml) extracts implying potential risk of interaction when CYP2C9 substrates are consumed with CA products. The two extracts however showed negligible inhibition towards CYP2D6 and CYP3A4 (IC(50)'s of 123.3 microg/ml and above). Similarly CA aqueous and hexane extracts did not significantly inhibit all three isoforms investigated (IC(50)'s of 117.9 microg/ml and above). Among the active constituents investigated, asiatic acid and madecassic acid appeared to selectively inhibit CYP2C9 and CYP2D6 more than CYP3A4. Of particular interest is the potent inhibitory effect of asiatic acid on CYP2C9 (K(i)=9.1 microg/ml). This signifies potential risk of interaction when substrates for this isoform are taken together with CA products with high asiatic acid content. Inhibitions of asiatic acid with the other isoforms and that of madecassic acid with all isoforms were only moderate (K(i)'s ranged from 17.2 to 84.4 microg/ml). On the other hand, the IC(50) values for asiaticoside were high (1070.2 microg/ml or above) for all three isoforms, indicating negligible or low potential of this compound to modulate CYP enzymatic activity.

    CONCLUSION: Centella asiatica extracts and active constituents inhibited CYP2C9, CYP2D6 and CYP3A4 activities with varying potency with CYP2C9 being the most susceptible isoform to inhibition. Significant inhibition was observed for asiatic acid and CA ethanol and dichloromethane extracts, implying involvement of semipolar constituents from CA in the effect. This study suggested that CA could cause drug-herb interactions through CYP2C9 inhibition.

    Matched MeSH terms: Enzyme Inhibitors/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links