Displaying all 13 publications

Abstract:
Sort:
  1. Lee MF, Chan ES, Tan WS, Tam KC, Tey BT
    J Chromatogr A, 2016 May 6;1445:1-9.
    PMID: 27059397 DOI: 10.1016/j.chroma.2016.03.066
    Purification of virus-like particles (VLPs) in bind-and-elute mode has reached a bottleneck. Negative chromatography has emerged as the alternative solution; however, benchmark of negative chromatography media and their respective optimized conditions are absent. Hence, this study was carried out to compare the performance of different negative chromatography media for the purification of hepatitis B VLPs (HB-VLPs) from clarified Escherichia coli feedstock. The modified anion exchange media, core-shell adsorbents (InertShell and InertLayer 1000) and polymer grafted adsorbents (SQ) were compared. The results of chromatography from packed bed column of core-shell adsorbents showed that there is a trade-off between the purity and recovery of HB-VLPs in the flowthrough fraction due to the shell thickness. Atomic force microscopic analysis revealed funnel-shaped pore channels in the shell layer which may contribute to the entrapment of HB-VLPs. A longer residence time at a lower feed flow rate (0.5ml/min) improved slightly the HB-VLPs purity in all modified adsorbents, but the recovery in InertShell reduced substantially. The preheat-treatment is not recommended for the negative chromatography as the thermal-induced co-aggregation of HCPs and HB-VLPs would flow along with HB-VLPs and thus reduced the HB-VLPs purity in the flowthrough. Further reduction in the feedstock concentration enhanced the purity of HB-VLPs especially in InertLayer 1000 but reduced substantially the recovery of HB-VLPs. In general, the polymer grafted adsorbent, SQ, performed better than the core-shell adsorbents in handling a higher feedstock concentration.
    Matched MeSH terms: Hepatitis B Surface Antigens/metabolism
  2. Muhamad A, Ho KL, Rahman MB, Uhrín D, Tan WS
    Chem Biol Drug Des, 2013 Jun;81(6):784-94.
    PMID: 23405984 DOI: 10.1111/cbdd.12120
    A specific ligand targeting the immunodominant region of hepatitis B virus is desired in neutralizing the infectivity of the virus. In a previous study, a disulfide constrained cyclic peptide cyclo S(1) ,S(9) Cys-Glu-Thr-Gly-Ala-Lys-Pro-His-Cys (S(1) , S(9) -cyclo-CETGAKPHC) was isolated from a phage displayed cyclic peptide library using an affinity selection method against hepatitis B surface antigen. The cyclic peptide binds tightly to hepatitis B surface antigen with a relative dissociation constant (KD (rel) ) of 2.9 nm. The binding site of the peptide was located at the immunodominant region on hepatitis B surface antigen. Consequently, this study was aimed to elucidate the structure of the cyclic peptide and its interaction with hepatitis B surface antigen in silico. The solution structure of this cyclic peptide was solved using (1) H, (13) C, and (15) N NMR spectroscopy and molecular dynamics simulations with NMR-derived distance and torsion angle restraints. The cyclic peptide adopted two distinct conformations due to the isomerization of the Pro residue with one structured region in the ETGA sequence. Docking studies of the peptide ensemble with a model structure of hepatitis B surface antigen revealed that the cyclic peptide can potentially be developed as a therapeutic drug that inhibits the virus-host interactions.
    Matched MeSH terms: Hepatitis B Surface Antigens/metabolism*
  3. Tan WS, Tan GH, Yusoff K, Seow HF
    J Clin Virol, 2005 Sep;34(1):35-41.
    PMID: 16087122
    The surface antigen (HBsAg) of hepatitis B virus (HBV) is highly conformational and generally evokes protective humoral immune response in human. A disulfide constrained random heptapeptide library displayed on the coat protein III of filamentous bacteriophage M13 was employed to select specific ligands that interact with HBsAg subtype ad. Fusion phages carrying the amino acid sequence ETGAKPH and other related sequences were isolated. The binding site of peptide ETGAKPH was located on the immunodominant region of HBsAg. An equilibrium binding assay in solution showed that the phage binds tightly to HBsAg with a relative dissociation constant (KDrel) of 2.9+/-0.9 nM. The phage bearing this peptide has the potential to be used as a diagnostic reagent and two assays for detecting HBsAg in blood samples are described.
    Matched MeSH terms: Hepatitis B Surface Antigens/metabolism*
  4. Kok WL, Yusoff K, Nathan S, Tan WS
    J. Biochem. Mol. Biol. Biophys., 2002 Feb;6(1):55-8.
    PMID: 12186783
    The PreS domain of hepatitis B virus (HBV) is believed to be involved in virion assembly and attachment to a hepatocyte receptor during infection. In order to study the functions of this region, we fused it to the g3p protein of bacteriophage M13 that allows the fusion protein to be displayed at the tip of the filament. The fusion protein was detected by the anti-E tag antibody on a Western blot. The polypeptide in a soluble form was produced by transfecting a non-suppressor E. coli host cell with the recombinant phagemid. The soluble protein was detected in cytoplasm, in the periplasmic space and also in the medium. The functional display of the PreS domain would provide an alternative means to study its interactions with the nuleocapsid and hepatocytes.
    Matched MeSH terms: Hepatitis B Surface Antigens/metabolism
  5. Tam YJ, Allaudin ZN, Lila MA, Bahaman AR, Tan JS, Rezaei MA
    BMC Biotechnol, 2012;12:70.
    PMID: 23039947 DOI: 10.1186/1472-6750-12-70
    Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg) from Pichia pastoris expression cells were optimized using response surface methodology (RSM) based on the central composite design (CCD). The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells.
    Matched MeSH terms: Hepatitis B Surface Antigens/metabolism
  6. Hong YS, Chang Y, Ryu S, Cainzos-Achirica M, Kwon MJ, Zhang Y, et al.
    Sci Rep, 2017 07 04;7(1):4606.
    PMID: 28676706 DOI: 10.1038/s41598-017-04206-6
    The role of hepatitis virus infection in glucose homeostasis is uncertain. We examined the associations between hepatitis B virus (HBV) or hepatitis C virus (HCV) infection and the development of diabetes in a cohort (N = 439,708) of asymptomatic participants in health screening examinations. In cross-sectional analyses, the multivariable-adjusted odds ratio for prevalent diabetes comparing hepatitis B surface antigen (HBsAg) (+) to HBsAg (-) participants was 1.17 (95% CI 1.06-1.31; P = 0.003). The corresponding odds ratio comparing hepatitis C antibodies (HCV Ab) (+) to HCV Ab (-) participants was 1.43 (95% CI 1.01-2.02, P = 0.043). In prospective analyses, the multivariable-adjusted hazard ratio for incident diabetes comparing HBsAg (+) to HbsAg (-) participants was 1.23 (95% CI 1.08-1.41; P = 0.007). The number of incident cases of diabetes among HCV Ab (+) participants (10 cases) was too small to reliably estimate the prospective association between HCV infection and diabetes. In this large population at low risk of diabetes, HBV and HCV infections were associated with diabetes prevalence and HBV infection with the risk of incident diabetes. Our studies add evidence suggesting that diabetes is an additional metabolic complication of HBV and HCV infection.
    Matched MeSH terms: Hepatitis B Surface Antigens/metabolism*
  7. Tang KH, Yusoff K, Tan WS
    J Virol Methods, 2009 Aug;159(2):194-9.
    PMID: 19490973 DOI: 10.1016/j.jviromet.2009.03.015
    Hepatitis B is a major public health problem worldwide which may lead to chronic liver diseases, cirrhosis and hepatocellular carcinoma. An interaction between hepatitis B virus (HBV) envelope protein, particularly the PreS1 region, and a specific cell surface receptor is believed to be the initial step of HBV infection through attachment to hepatocytes. In order to develop a gene delivery system, bacteriophage T7 was modified genetically to display polypeptides of the PreS1 region. A recombinant T7 phage displaying amino acids 60-108 of the PreS1 region (PreS1(60-108)) was demonstrated to be most effective in transfecting HepG2 cells in a dose- and time-dependant manner. The phage genome was recovered from the cell lysate and confirmed by PCR whereas the infectious form of the internalized phage was measured by a plaque-forming assay. The internalized phage exhibited the appearance of green fluorescent dots when examined by immunofluorescence microscopy. Surface modification, particularly by displaying the PreS1(60-108) enhanced phage uptake, resulting in more efficient in vitro gene transfer. The ability of the recombinant phage to transfect HepG2 cells demonstrates the potential of the phage display system as a gene therapy for liver cancer.
    Matched MeSH terms: Hepatitis B Surface Antigens/metabolism*
  8. Tan WS
    J Gen Appl Microbiol, 2002 Apr;48(2):103-7.
    PMID: 12469306
    The long surface antigen (L-HBsAg) of hepatitis B virus (HBV) plays a central role in the production of infectious virions. During HBV morphogenesis, both the PreS and S domains of L-HBsAg form docking sites for the viral nucleocapsids. Thus, a compound that disrupts the interaction between the L-HBsAg and nucleocapsids could serve as a therapeutic agent against the virus based upon inhibition of morphogenesis. Synthetic peptides correspond to the binding sites in L-HBsAg inhibited the association of L-HBsAg with core antigen (HBcAg). A synthetic peptide carrying the epitope for a monoclonal antibody to the PreS1 domain competed weakly with L-HBsAg for HBcAg, but peptides corresponding to a linear sequence at the tip of the nucleocapsid spike did not, showing that the competing peptide does not resemble the tip of the spike.
    Matched MeSH terms: Hepatitis B Surface Antigens/metabolism
  9. Tam YJ, Zeenathul NA, Rezaei MA, Mustafa NH, Azmi MLM, Bahaman AR, et al.
    Biotechnol Appl Biochem, 2017 Sep;64(5):735-744.
    PMID: 27506960 DOI: 10.1002/bab.1528
    Limit of detection (LOD), limit of quantification, and the dynamic range of detection of hepatitis B surface antigen antibody (anti-HBs) using a surface plasmon resonance (SPR) chip-based approach with Pichia pastoris-derived recombinant hepatitis B surface antigen (HBsAg) as recognition element were established through the scouting for optimal conditions for the improvement of immobilization efficiency and in the use of optimal regeneration buffer. Recombinant HBsAg was immobilized onto the sensor surface of a CM5 chip at a concentration of 150 mg/L in sodium acetate buffer at pH 4 with added 0.6% Triton X-100. A regeneration solution of 20 mM HCl was optimally found to effectively unbind analytes from the ligand, thus allowing for multiple screening cycles. A dynamic range of detection of ∼0.00098-0.25 mg/L was obtained, and a sevenfold higher LOD, as well as a twofold increase in coefficient of variance of the replicated results, was shown as compared with enzyme-linked immunosorbent assay (ELISA). Evaluation of the assay for specificity showed no cross-reactivity with other antibodies tested. The ability of SPR chip-based assay and ELISA to detect anti-HBs in human serum was comparable, indicating that the SPR chip-based assay with its multiple screening capacity has greater advantage over ELISA.
    Matched MeSH terms: Hepatitis B Surface Antigens/metabolism*
  10. Hossain MG, Mahmud MM, Nazir KHMNH, Ueda K
    Int J Mol Sci, 2020 Jan 15;21(2).
    PMID: 31952213 DOI: 10.3390/ijms21020546
    Mutations in the hepatitis B virus (HBV) genome can potentially lead to vaccination failure, diagnostic escape, and disease progression. However, there are no reports on viral gene expression and large hepatitis B surface antigen (HBsAg) antigenicity alterations due to mutations in HBV isolated from a Bangladeshi population. Here, we sequenced the full genome of the HBV isolated from a clinically infected patient in Bangladesh. The open reading frames (ORFs) (P, S, C, and X) of the isolated HBV strain were successfully amplified and cloned into a mammalian expression vector. The HBV isolate was identified as genotype C (sub-genotype C2), serotype adr, and evolutionarily related to strains isolated in Indonesia, Malaysia, and China. Clinically significant mutations, such as preS1 C2964A, reverse transcriptase domain I91L, and small HBsAg N3S, were identified. The viral P, S, C, and X genes were expressed in HEK-293T and HepG2 cells by transient transfection with a native subcellular distribution pattern analyzed by immunofluorescence assay. Western blotting of large HBsAg using preS1 antibody showed no staining, and preS1 ELISA showed a significant reduction in reactivity due to amino acid mutations. This mutated preS1 sequence has been identified in several Asian countries. To our knowledge, this is the first report investigating changes in large HBsAg antigenicity due to preS1 mutations.
    Matched MeSH terms: Hepatitis B Surface Antigens/metabolism
  11. Candotti D, Lin CK, Belkhiri D, Sakuldamrongpanich T, Biswas S, Lin S, et al.
    Gut, 2012 Dec;61(12):1744-53.
    PMID: 22267593 DOI: 10.1136/gutjnl-2011-301281
    To investigate the molecular basis of occult hepatitis B virus (HBV) infection (OBI) in Asian blood donors.
    Matched MeSH terms: Hepatitis B Surface Antigens/metabolism
  12. Ho KL, Yusoff K, Seow HF, Tan WS
    J Med Virol, 2003 Jan;69(1):27-32.
    PMID: 12436474
    M13 phages that display random disulfide constrained heptapeptides on their gpIII proteins were used to select for high affinity ligands to hepatitis B core antigen (HBcAg). Phages bearing the amino acid sequences C-WSFFSNI-C and C-WPFWGPW-C were isolated, and a binding assay in solution showed that these phages bind tightly to full-length and truncated HBcAg with K D rel values less than 25 nM, which is at least 10 orders of magnitude higher than phage carrying the peptide sequence LLGRMK selected from a linear peptide library. Both the phages that display the constrained peptides were inhibited from binding to HBcAg particles by a monoclonal antibody that binds specifically to the immunodominant region of the particles. A synthetic heptapeptide with the amino acid sequence WSFFSNI derived from one of the fusion peptides inhibits the binding of large surface antigen (L-HBsAg) to core particles with an IC50 value of 12 +/- 2 microM. This study has identified a smaller peptide with a greater inhibitory effect on L-HBsAg-HBcAg association.
    Matched MeSH terms: Hepatitis B Surface Antigens/metabolism
  13. Tsai KN, Chong CL, Chou YC, Huang CC, Wang YL, Wang SW, et al.
    J Virol, 2015 Nov;89(22):11406-19.
    PMID: 26339052 DOI: 10.1128/JVI.00949-15
    The risk of liver cancer in patients infected with the hepatitis B virus (HBV) and their clinical response to interferon alpha therapy vary based on the HBV genotype. The mechanisms underlying these differences in HBV pathogenesis remain unclear. In HepG2 cells transfected with a mutant HBV(G2335A) expression plasmid that does not transcribe the 2.2-kb doubly spliced RNA (2.2DS-RNA) expressed by wild-type HBV genotype A, the level of HBV pregenomic RNA (pgRNA) was higher than that in cells transfected with an HBV genotype A expression plasmid. By using cotransfection with HBV genotype D and 2.2DS-RNA expression plasmids, we found that a reduction of pgRNA was observed in the cells even in the presence of small amounts of the 2.2DS-RNA plasmid. Moreover, ectopic expression of 2.2DS-RNA in the HBV-producing cell line 1.3ES2 reduced the expression of pgRNA. Further analysis showed that exogenously transcribed 2.2DS-RNA inhibited a reconstituted transcription in vitro. In Huh7 cells ectopically expressing 2.2DS-RNA, RNA immunoprecipitation revealed that 2.2DS-RNA interacted with the TATA-binding protein (TBP) and that nucleotides 432 to 832 of 2.2DS-RNA were required for efficient TBP binding. Immunofluorescence experiments showed that 2.2DS-RNA colocalized with cytoplasmic TBP and the stress granule components, G3BP and poly(A)-binding protein 1 (PABP1), in Huh7 cells. In conclusion, our study reveals that 2.2DS-RNA acts as a repressor of HBV transcription through an interaction with TBP that induces stress granule formation. The expression of 2.2DS-RNA may be one of the viral factors involved in viral replication, which may underlie differences in clinical outcomes of liver disease and responses to interferon alpha therapy between patients infected with different HBV genotypes.
    Matched MeSH terms: Hepatitis B Surface Antigens/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links