Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Jabbarzare M, Chin VK, Talib H, Yam MF, Adam SK, Hassan H, et al.
    Iran J Parasitol, 2015 Jul-Sep;10(3):389-401.
    PMID: 26622294
    Interleukin 18 (IL-18) exerts pleiotropic roles in many inflammatory-related diseases including parasitic infection. Previous studies have demonstrated the promising therapeutic potential of modulating IL-18 bioactivity in various pathological conditions. However, its involvement during malaria infection has yet to be established. In this study, we demonstrated the effect of modulating IL-18 on the histopathological conditions of malaria infected mice.
    Matched MeSH terms: Interleukin-18
  2. Vakaloloma U, Ho TH, Loh JY, Chong CM, Wangkahart E, Lee MC, et al.
    Vet Res Commun, 2023 Dec;47(4):1973-1990.
    PMID: 37349590 DOI: 10.1007/s11259-023-10152-8
    Rachycentron canadum (cobia) is a marine fish species of high economic value in aquaculture due to its fast growth rate and good feed conversion efficacy. Regrettably, the industry has been affected by significant setbacks from high mortality due to diseases. Consequently, an improved perception of innate immunity correlated to each mucosal-associated lymphoid tissue (MALT) in teleost fish is necessary to understand hosts' response towards infections better. The utilization of polysaccharides in seaweed to stimulate the immune system has gathered unprecedented attention. The present study examined the immunostimulatory effects of Sarcodia suae water extracts (SSWE) on in vivo gill-, gut- and skin-associated lymphoid tissues (GIALT, GALT, and SALT) via immersion and oral ingestions. The GIALT genes (TNF-α, Cox2, IL-1β, IL-6, IL-8, IL-17 A/F1-3, IL-11, IL-12, IL-15, IL-18, MHCIa, IgM, and IgT) except IL-10 recorded positive upregulations in a dose-dependent manner post 24 h immersion in SSWE, indicating the algae extract contained bioactive compounds that could stimulate the immune genes. The upregulation of IL-12, IL-15, and IL-18 in the gills and hindgut post-SSWE immersion indicated that the extract could promote Th1-related responses in the MALTs. The modulation of immune gene expressions in the feeding trial was less potent than in the SSWE immersion. These findings indicated that the SSWE stimulated robust immune responses in both the GIALT and GALT of cobia. This suggests that the SSWE could be further explored as an effective immersive stimulant for fish, enhancing their immune system against pathogens.
    Matched MeSH terms: Interleukin-18
  3. Chia CS, Ban K, Ithnin H, Singh H, Krishnan R, Mokhtar S, et al.
    Immunol Lett, 2002 Dec 03;84(3):163-72.
    PMID: 12413732
    This is the first report on the detection of IL-18, IFN-gamma and IL-10 proteins in hepatocelllular carcinoma. In the apparently normal surrounding tissue, 13 out of 17 paired specimens showed positive immunoreactivity to IL-18 (76.5%) compared with six out of 17 in the tumour portion (35.3% of specimens). Thus, a significantly higher number of IL-18 positive specimens was found in the hepatocytes of apparently normal surrounding tissue compared with the tumour (P=0.018). In contrast, the number of specimens with positive immunoreactivity to the antibody against the Th1 cytokine, IFN-gamma expression in the hepatocytes was lower. Only one specimen from the apparently normal surrounding tissue (one out of 17; 5.9%) and three other specimens from the tumour portion (three out of 17; 17.6%) had positive immunoreactivity. Similarly, the expression of the Th2 cytokine, IL-10 in normal (four out of 17; 23.5%) and tumour portions (five out of 17; 29.4%) was also low. Thus, there did not appear to be predominant Th2 immune response as denoted by IL-10 expression. Using the Spearman correlation rank test, a significant correlation between IL-18 expression in the apparently normal surrounding tissue and high alpha-foetoprotein (AFP) levels of >350 IU/l. No correlation between IL-18 expression in the tumour portion and clinicopathological factors was found. There was also no correlation found between IL-18 and the other cytokines, namely, IFN-gamma and IL-10 expression These new findings provide additional information on the type of cytokines expressed in the tumour microenvironment and give a further insight into the role of cytokines in the pathogenesis of cancer which is critical for the development of effective immunotherapeutic approaches for cancer therapy in the future.
    Matched MeSH terms: Interleukin-18/biosynthesis; Interleukin-18/immunology
  4. Basir R, Hasballah K, Jabbarzare M, Gam LH, Abdul Majid AM, Yam MF, et al.
    Trop Biomed, 2012 Sep;29(3):405-21.
    PMID: 23018504 MyJurnal
    The involvement of interleukin-18 (IL-18) and the effects of modulating its release on the course of malaria infection were investigated using Plasmodium berghei ANKA infection in ICR mice as a model. Results demonstrated that plasma IL-18 concentrations in malarial mice were significantly elevated and positively correlated with the percentage parasitaemia development. Significant expressions of IL-18 were also observed in the brain, spleen and liver tissues. Slower development of parasitaemia was observed significantly upon inhibition and neutralization of IL-18, whereas faster development of parasitaemia was recorded when the circulating levels of IL-18 were further augmented during the infection. Inhibition and neutralization of IL-18 production also resulted in a significant decrease of plasma concentrations of pro-inflammatory cytokines (TNFα, IFNγ, IL-1α and IL-6), whereas the anti-inflammatory cytokine, IL-10, was significantly increased. Augmenting the release of IL- 18 during the infection on the other hand resulted in the opposite. Early mortality in malarial mice was also observed when the circulating levels of IL-18 were further augmented. Results proved the important role of IL-18 in immune response against malaria and suggest that IL-8 is pro-inflammatory in nature and may involve in mediating the severity of the infection through a pathway of elevating the pro-inflammatory cytokine and limiting the release of anti-inflammatory cytokine.
    Matched MeSH terms: Interleukin-18/analysis; Interleukin-18/metabolism*; Interleukin-18/therapeutic use
  5. Jusof FF, Lim CK, Aziz FN, Soe HJ, Raju CS, Sekaran SD, et al.
    J Infect Dis, 2022 Nov 28;226(11):1964-1973.
    PMID: 35767283 DOI: 10.1093/infdis/jiac273
    BACKGROUND: The resolution or aggravation of dengue infection depends on the patient's immune response during the critical phase. Cytokines released by immune cells increase with the worsening severity of dengue infections. Cytokines activate the kynurenine pathway (KP) and the extent of KP activation then influences disease severity.

    METHODS: KP metabolites and cytokines in plasma samples of patients with dengue infection (dengue without warning signs [DWS-], dengue with warning signs [DWS+], or severe dengue) were analyzed. Cytokines (interferon gamma [IFN-ɣ], tumor necrosis factor, interleukin 6, CXCL10/interferon-inducile protein 10 [IP-10], interleukin 18 [IL-18], CCL2/monocyte chemoattractant protein-1 [MCP-1], and CCL4/macrophage inflammatory protein-1beta [MIP-1β] were assessed by a Human Luminex Screening Assay, while KP metabolites (tryptophan, kynurenine, anthranilic acid [AA], picolinic acid, and quinolinic acid) were assessed by ultra-high-performance liquid chromatography and Gas Chromatography Mass Spectrophotometry [GCMS] assays.

    RESULTS: Patients with DWS+ had increased activation of the KP where kynurenine-tryptophan ratio, anthranilic acid, and picolinic acid were elevated. These patients also had higher levels of the cytokines IFN-ɣ, CXCL10, CCL4, and IL-18 than those with DWS-. Further receiver operating characteristic analysis identified 3 prognostic biomarker candidates, CXCL10, CCL2, and AA, which predicted patients with higher risks of developing DWS+ with an accuracy of 97%.

    CONCLUSIONS: The data suggest a unique biochemical signature in patients with DWS+. CXCL10 and CCL2 together with AA are potential prognostic biomarkers that discern patients with higher risk of developing DWS+ at earlier stages of infection.

    Matched MeSH terms: Interleukin-18
  6. Abdullah D, Ford TR, Papaioannou S, Nicholson J, McDonald F
    Biomaterials, 2002 Oct;23(19):4001-10.
    PMID: 12162333
    Biocompatibility of two variants of accelerated Portland cement (APC) were investigated in vitro by observing the cytomorphology of SaOS-2 osteosarcoma cells in the presence of test materials and the effect of these materials on the expression of markers of bone remodelling. Glass ionomer cement (GIC), mineral trioxide aggregate (MTA) and unmodified Portland cement (RC) were used for comparison. A direct contact assay was undertaken in four samples of each test material, collected at 12, 24, 48 and 72 h. Cell morphology was observed using scanning electron microscopy (SEM) and scored. Culture media were collected for cytokine quantification using enzyme-linked immunosorbent assay (ELISA). On SEM evaluation, healthy SaOS-2 cells were found adhering onto the surfaces of APC variant, RC and MTA. In contrast, rounded and dying cells were observed on GIC. Using ELISA, levels of interleukin (IL)-1beta, IL-6, IL-18 and OC were significantly higher in APC variants compared with controls and GIC (p<0.01), but these levels of cytokines were not statistically significant compared with MTA. The results of this study provide evidence that both APC variants are non-toxic and may have potential to promote bone healing. Further development of APC is indicated to produce a viable dental restorative material and possibly a material for orthopaedic
    Matched MeSH terms: Interleukin-18/metabolism
  7. Lin GW, Xu C, Chen K, Huang HQ, Chen J, Song B, et al.
    Lancet Oncol, 2020 Feb;21(2):306-316.
    PMID: 31879220 DOI: 10.1016/S1470-2045(19)30799-5
    BACKGROUND: Extranodal natural killer T-cell lymphoma (NKTCL; nasal type) is an aggressive malignancy with a particularly high prevalence in Asian and Latin American populations. Epstein-Barr virus infection has a role in the pathogenesis of NKTCL, and HLA-DPB1 variants are risk factors for the disease. We aimed to identify additional novel genetic variants affecting risk of NKTCL.

    METHODS: We did a genome-wide association study of NKTCL in multiple populations from east Asia. We recruited a discovery cohort of 700 cases with NKTCL and 7752 controls without NKTCL of Han Chinese ancestry from 19 centres in southern, central, and northern regions of China, and four independent replication samples including 717 cases and 12 650 controls. Three of these independent samples (451 cases and 5301 controls) were from eight centres in the same regions of southern, central, and northern China, and the fourth (266 cases and 7349 controls) was from 11 centres in Hong Kong, Taiwan, Singapore, and South Korea. All cases had primary NKTCL that was confirmed histopathologically, and matching with controls was based on geographical region and self-reported ancestry. Logistic regression analysis was done independently by geographical regions, followed by fixed-effect meta-analyses, to identify susceptibility loci. Bioinformatic approaches, including expression quantitative trait loci, binding motif and transcriptome analyses, and biological experiments were done to fine-map and explore the functional relevance of genome-wide association loci to the development of NKTCL.

    FINDINGS: Genetic data were gathered between Jan 1, 2008, and Jan 23, 2019. Meta-analysis of all samples (a total of 1417 cases and 20 402 controls) identified two novel loci significantly associated with NKTCL: IL18RAP on 2q12.1 (rs13015714; p=2·83 × 10-16; odds ratio 1·39 [95% CI 1·28-1·50]) and HLA-DRB1 on 6p21.3 (rs9271588; 9·35 × 10-26 1·53 [1·41-1·65]). Fine-mapping and experimental analyses showed that rs1420106 at the promoter of IL18RAP was highly correlated with rs13015714, and the rs1420106-A risk variant had an upregulatory effect on IL18RAP expression. Cell growth assays in two NKTCL cell lines (YT and SNK-6 cells) showed that knockdown of IL18RAP inhibited cell proliferation by cell cycle arrest in NKTCL cells. Haplotype association analysis showed that haplotype 47F-67I was associated with reduced risk of NKTCL, whereas 47Y-67L was associated with increased risk of NKTCL. These two positions are component parts of the peptide-binding pocket 7 (P7) of the HLA-DR heterodimer, suggesting that these alterations might account for the association at HLA-DRB1, independent of the previously reported HLA-DPB1 variants.

    INTERPRETATION: Our findings provide new insights into the development of NKTCL by showing the importance of inflammation and immune regulation through the IL18-IL18RAP axis and antigen presentation involving HLA-DRB1, which might help to identify potential therapeutic targets. Taken in combination with additional genetic and other risk factors, our results could potentially be used to stratify people at high risk of NKTCL for targeted prevention.

    FUNDING: Guangdong Innovative and Entrepreneurial Research Team Program, National Natural Science Foundation of China, National Program for Support of Top-Notch Young Professionals, Chang Jiang Scholars Program, Singapore Ministry of Health's National Medical Research Council, Tanoto Foundation, National Research Foundation Singapore, Chang Gung Memorial Hospital, Recruitment Program for Young Professionals of China, First Affiliated Hospital and Army Medical University, US National Institutes of Health, and US National Cancer Institute.

    Matched MeSH terms: Interleukin-18/metabolism
  8. Tan HY, Yong YK, Andrade BB, Shankar EM, Ponnampalavanar S, Omar SF, et al.
    AIDS, 2015 Feb 20;29(4):421-31.
    PMID: 25565499 DOI: 10.1097/QAD.0000000000000557
    Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is a substantial problem in HIV/TB coinfected patients commencing antiretroviral therapy (ART). The immunopathogenesis of TB-IRIS includes increased production of proinflammatory chemokines and cytokines, including interleukin-18, which is a signature cytokine of the nucleotide-binding domain and leucine-rich repeat pyrin containing protein-3 inflammasome. We compared plasma levels of interleukin-18 and other biomarkers of monocyte/macrophage activation in the prediction and characterization of TB-IRIS.
    Matched MeSH terms: Interleukin-18/blood; Interleukin-18/immunology*
  9. Wan Shahriman Yushdie Wan Yusoff, Maha Abdullah, Fairuz Amran, Zamberi Sekawi, Muhammad Yazli Yuhana, Syafinaz Amin Nordin
    MyJurnal
    Introduction: Leptospirosis is a re-emerging zoonotic disease caused by Leptospira bacteria. The clinical manifes-tations of leptospirosis include mild-fever to a severe or even fatal. Increased levels of inflammatory cytokines pro-duced in response to the Leptospira infection by the host immune system were hypothesized as among the causes of severity in leptospirosis. Besides the classical presentation with the triad of febrile, jaundice, and renal failure, patients with leptospirosis also can pose with predominant sign and symptoms of pulmonary involvement. This study aimed to compare the levels of TNF-α, IL-1b, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, IL-17A, IL-18, and IL-22 In the plasma of samples of leptospirosis patients with and without pneumonia. Methods: Circulating cytokine levels in plasma were measured in seventeen patients hospitalized and diagnosed with leptospirosis in Malaysia (January 2016 – December 2017) and nineteen healthy individuals as controls. Patients were categorized into leptospirosis without pneumonia (n=12) and with pneumonia (n=5). Cytokine was measured using SimplePlexTM assays (San Jose, CA, USA). Measurement was performed in triplicate and statistical analysis was conducted using Graphpad® Prism v6 (San Diego, CA, USA). Results: Elevation of plasma TNF-α, IL-6, IL-8, IL-10, IL-18, and IL-22 levels were observed among leptospirosis patients with pneumonia compared to without, although no statistical differences were observed between these two groups. Conclusion: There are no significant differences observed between the levels of plasma TNF-α, IL-6, IL-8, IL-10, IL-18, and IL-22 in patients with pneumonia compared to without.
    Matched MeSH terms: Interleukin-18
  10. Jaffar N, Okinaga T, Nishihara T, Maeda T
    J Dairy Sci, 2018 Jul;101(7):5789-5798.
    PMID: 29680655 DOI: 10.3168/jds.2017-14355
    The activation of phagocytosis is one important approach to clearing pathogenic cells in a host. This study evaluated the ability of probiotic lactobacilli to induce phagocytic activity as well as the clearance of a periodontal pathogen, Aggregatibacter actinomycetemcomitans. First, the activation of phagocytosis was found by using lyophilized dead cells. Probiotic Lactobacillus strains significantly enhanced the phagocytic activity of macrophage cells, indicating that the probiotic lactobacilli have a remarkable ability to stimulate the macrophages. Essentially, 3 Lactobacillus strains tested did not have any critical toxic effect on the murine macrophage, and Lactobacillus johnsonii NBRC 13952 showed the least cytotoxic effect on the RAW264.7 macrophages. The expression of classically activated macrophage markers, IL-1β, and cluster of differentiation 80 increased by L. johnsonii NBRC 13952; however, there was no significant difference for IL-18. The highest phagocytic activity by macrophages was found in a condition in which the macrophage activated by L. johnsonii NBRC 13952 functions to kill the cells of A. actinomycetemcomitans. Correlating with the result, a high amount of hypodiploid DNA (SubG1) was detected from the macrophage cells stimulated by L. johnsonii NBRC 13952. Taken together, the results suggest that macrophages activated by the Lactobacillus strain can facilitate the phagocytosis of A. actinomycetemcomitans cells by linking with enhanced apoptotic activities. In conclusion, L. johnsonii NBRC 13952 has a certain role in activating the RAW264.7 macrophages, thereby counteracting the infection of A. actinomycetemcomitans.
    Matched MeSH terms: Interleukin-18
  11. Kristeen-Teo YW, Yeap SK, Tan SW, Omar AR, Ideris A, Tan SG, et al.
    BMC Vet Res, 2017 May 31;13(1):151.
    PMID: 28569155 DOI: 10.1186/s12917-017-1071-y
    BACKGROUND: Virulent Newcastle disease virus (NDV) was reported to cause rapid depletion of chicken bursa of Fabricius. Severe pathological condition of the organ is commonly associated with high levels of virus replication, intense inflammatory response and also the degree of apoptosis. In this study, the responses of chicken bursa of Fabricius infected with two different strains of velogenic NDV, namely AF2240 and IBS002, were investigated by observing cell population changes, oxidative stress, viral replication and cytokine expression in the organ. Subsequently, apoptosis of enriched bursal IgM+ cells was determined to help us elucidate possible host pathogen relationships between the chicken bursa of Fabricius and NDV infection.

    RESULTS: The depletion of IgM+ cells and infiltration of macrophages were observed to be higher in bursa infected with AF2240 as compared to IBS002. In line with the increment of the macrophage population, higher nitric oxide (NO) and malondialdehyde (MDA) contents which indicated higher oxidative stress were also detected in bursa infected with NDV AF2240. In addition, higher pro-inflammatory cytokines and chemokine gene expression such as chicken CXCLi2, IL-18 and IFN-γ were observed in AF2240 infected bursa. Depletion of IgM+ cells was further confirmed with increased cell death and apoptosis of the cells in AF2240 infected bursa as compared to IBS002. However, it was found that the viral load for NDV strain IBS002 was comparatively higher than AF2240 although the magnitude of the pro- inflammatory cytokines expression and cell apoptosis was lower than AF2240.

    CONCLUSION: The results of our study demonstrated that infection of NDV strains AF2240 and IBS002 caused apoptosis in bursa IgM+ cells and its severity was associated with increased expression of pro-inflammatory cytokines/chemokine, macrophage infiltration and oxidative stress as the infection duration was prolonged. However, of the two viruses, we observed that NDV AF2240 induced a greater magnitude of apoptosis in chicken bursa IgM+ cells in comparison to IBS002. This might be due to the high level of oxidative stress and inflammatory cytokines/chemokine as well as lower IL10 expression which subsequently led to a high rate of apoptosis in the chicken bursa of Fabricius although the detected viral load of AF2240 was lower than IBS002.

    Matched MeSH terms: Interleukin-18
  12. Sivalingam SP, Yoon KH, Koh DR, Fong KY
    Tissue Antigens, 2003 Dec;62(6):498-504.
    PMID: 14617033 DOI: 10.1046/j.1399-0039.2003.00137.x
    Rheumatoid arthritis (RA) is a chronic arthritic condition that can lead to deformities and disabilities. Although numerous studies reported the association of human leukocyte antigen (HLA)-DRB1*04 and RA, other genes, e.g. cytokines genes, may contribute towards disease susceptibility. Interleukin-18 (IL-18) is a proinflammatory cytokine postulated to play a role in the acute and chronic inflammatory phases of RA. The IL-18 protein expression seems to be regulated by two single-nucleotide polymorphisms (SNPs) located at positions -607 and -137 in the promoter region of the gene. It is postulated that specific alleles may be associated with susceptibility to the development of RA. In the present study, we described the IL-18 gene promoter region genotypes and combined genotypes (-607/-137) in 106 RA patients and 273 unrelated healthy controls to evaluate the contributions of these alleles to RA predisposition in Chinese, Malays, and Indians. The genotyping were performed using sequence-specific polymerase chain reactions. Rheumatoid factors were assayed by enzyme-linked immunosorbent assay. Biodata were obtained through chart review. The controls had significantly higher frequency of AA genotype at position -607 when compared to RA patients. No significant differences were observed in the distribution of either allelic or genotypic frequencies at position -137. There was no association between the genotypes and the presence of rheumatoid factors. This study did not find evidence of a genetic susceptibility factor but demonstrated the novel finding that the AA genotype at position -607 is associated with a protective effect against development of RA in Chinese individuals. This protection may be mediated through inhibition of cyclic (Adenosine 3', 5'-cyclic monophosphate) AMP-responsive element (CRE)-binding protein by the disruption of the CRE consensus sequence.
    Matched MeSH terms: Interleukin-18/genetics*
  13. Chear CT, Nallusamy R, Canna SW, Chan KC, Baharin MF, Hishamshah M, et al.
    Clin Immunol, 2020 02;211:108328.
    PMID: 31870725 DOI: 10.1016/j.clim.2019.108328
    Autoinflammatory disorders are characterized by dysregulated innate immune response, resulting in recurrent uncontrolled systemic inflammation and fever. Gain-of-function mutations in NLRC4 have been described to cause a range of autoinflammatory disorders. We report a twelve-year-old Malay girl with recurrent fever, skin erythema, and inflammatory arthritis. Whole exome sequencing and subsequent bidirectional Sanger sequencing identified a heterozygous missense mutation in NLRC4 (NM_001199138: c.1970A > T). This variant was predicted to be damaging in silico, was absent in public and local databases and occurred in a highly conserved residue in the leucine-rich repeat (LRR) domain. Cytokine analysis showed extremely high serum IL-18 and IL-18/CXCL9 ratio, consistent with other NLRC4-MAS patients. In summary, we identified the first patient with a novel de novo heterozygous NLRC4 gene mutation contributing to autoinflammatory disease in Malaysia. Our findings reinforce the likely pathogenicity of specific LRR domain mutations in NLRC4 and expand the clinical spectrum of NLRC4 mutations.
    Matched MeSH terms: Interleukin-18/blood
  14. Koh SM, Chan CK, Teo SH, Singh S, Merican A, Ng WM, et al.
    Knee, 2020 Jan;27(1):26-35.
    PMID: 31917106 DOI: 10.1016/j.knee.2019.10.028
    PURPOSE: Osteoarthritis (OA) of the knee is a multifactorial degenerative disease typically defined as the 'wear and tear' of articular joint cartilage. However, recent studies suggest that OA is a disease arising from chronic low-grade inflammation. We conducted a study to investigate the relationship between chronic inflammatory mediators present in both the systemic peripheral blood system and localised inflammation in synovial fluid (SF) of OA and non-OA knees; and subsequently made direct comparative analyses to understand the mechanisms that may underpin the processes involved in OA.

    METHODS: 20-Plex proteins were quantified using Human Magnetic Luminex® assay (R&D Systems, USA) from plasma and SF of OA (n = 14) and non-OA (n = 14) patients. Ingenuity Pathway Analysis (IPA) software was used to predict the relationship and possible interaction of molecules pertaining to OA.

    RESULTS: There were significant differences in plasma level for matrix metalloproteinase (MMP)-3, interleukin (IL)-27, IL-8, IL-4, tumour necrosis factor-alpha, MMP-1, IL-15, IL-21, IL-10, and IL-1 beta between the groups, as well as significant differences in SF level for IL-15, IL-8, vascular endothelial growth factor (VEGF), MMP-1, and IL-18. Our predictive OA model demonstrated that toll-like receptor (TLR) 2, macrophage migration inhibitory factor (MIF), TLR4 and IL-1 were the main regulators of IL-1B, IL-4, IL-8, IL-10, IL-15, IL-21, IL-27, MMP-1 and MMP-3 in the plasma system; whilst IL-1B, TLR4, IL-1, and basigin (BSG) were the regulators of IL-4, IL-8, IL-10, IL-15, IL-18, IL-21, IL-27, MMP-1, and MMP-3 in the SF system.

    CONCLUSION: The elevated plasma IL-8 and SF IL-18 may be associated with the pathogenesis of OA via the activation of MMP-3.

    Matched MeSH terms: Interleukin-18/metabolism*
  15. Lim KL, Jazayeri SD, Yeap SK, Alitheen NB, Bejo MH, Ideris A, et al.
    BMC Vet Res, 2012;8:132.
    PMID: 22866758 DOI: 10.1186/1746-6148-8-132
    DNA vaccines offer several advantages over conventional vaccines in the development of effective vaccines against avian influenza virus (AIV). However, one of the limitations of the DNA vaccine in poultry is that it induces poor immune responses. In this study, chicken interleukin (IL) -15 and IL-18 were used as genetic adjuvants to improve the immune responses induced from the H5 DNA vaccination in chickens. The immunogenicity of the recombinant plasmid DNA was analyzed based on the antibody production, T cell responses and cytokine production, following inoculation in 1-day-old (Trial 1) and 14-day-old (Trial 2) specific-pathogen-free chickens. Hence, the purpose of the present study was to explore the role of chicken IL-15 and IL-18 as adjuvants following the vaccination of chickens with the H5 DNA vaccine.
    Matched MeSH terms: Interleukin-18/immunology*
  16. Yong YK, Tan HY, Jen SH, Shankar EM, Natkunam SK, Sathar J, et al.
    J Transl Med, 2017 05 31;15(1):121.
    PMID: 28569153 DOI: 10.1186/s12967-017-1226-4
    BACKGROUND: Currently, several assays can diagnose acute dengue infection. However, none of these assays can predict the severity of the disease. Biomarkers that predicts the likelihood that a dengue patient will develop a severe form of the disease could permit more efficient patient triage and allows better supportive care for the individual in need, especially during dengue outbreaks.

    METHODS: We measured 20 plasma markers i.e. IFN-γ, IL-10, granzyme-B, CX3CL1, IP-10, RANTES, CXCL8, CXCL6, VCAM, ICAM, VEGF, HGF, sCD25, IL-18, LBP, sCD14, sCD163, MIF, MCP-1 and MIP-1β in 141 dengue patients in over 230 specimens and correlate the levels of these plasma markers with the development of dengue without warning signs (DWS-), dengue with warning signs (DWS+) and severe dengue (SD).

    RESULTS: Our results show that the elevation of plasma levels of IL-18 at both febrile and defervescence phase was significantly associated with DWS+ and SD; whilst increase of sCD14 and LBP at febrile phase were associated with severity of dengue disease. By using receiver operating characteristic (ROC) analysis, the IL-18, LBP and sCD14 were significantly predicted the development of more severe form of dengue disease (DWS+/SD) (AUC = 0.768, P 18, LBP and sCD14 among patients with severe form of dengue disease, our findings suggest a pathogenic role for an aberrant inflammasome and monocyte activation in the development of severe form of dengue disease.

    Matched MeSH terms: Interleukin-18/blood
  17. Lau YS, Zhao L, Zhang C, Li H, Han R
    Life Sci, 2020 Jul 10.
    PMID: 32659370 DOI: 10.1016/j.lfs.2020.118069
    AIM: Up-regulation of inflammasome proteins was reported in dystrophin-deficient muscles. However, it remains to be determined whether inflammasome activation plays a role in the pathogenesis of Duchenne muscular dystrophy. This study was therefore set out to investigate whether genetic disruption of the inflammasome pathway impacts the disease progression in mdx mice.

    MAIN METHODS: Mice deficient in both dystrophin and ASC (encoded by Pycard [PYD And CARD Domain Containing]) were generated. The impact of ASC deficiency on muscular dystrophy of mdx mice were assessed by measurements of serum cytokines, Western blot, real-time PCR and histopathological staining.

    KEY FINDINGS: The pro-inflammatory cytokines such as TNF-α, IL-6, KC/GRO and IL-10 were markedly increased in the sera of 8-week-old mdx mice compared to WT. Western blotting showed that P2X7, caspase-1, ASC and IL-18 were upregulated. Disruption of ASC and dystrophin expression in the mdx/ASC-/- mice was verified by Western blot analysis. Histopathological analysis did not find significant alterations in the muscular dystrophy phenotype in mdx/ASC-/- mice as compared to mdx mice.

    SIGNIFICANCE: Taken together, our results show that disruption of the central adaptor ASC of the inflammasome is insufficient to alleviate muscular dystrophy phenotype in mdx mice.

    Matched MeSH terms: Interleukin-18
  18. Ge P, Ong CY, Abdalkareem AE, Khoo BY, Yuan B
    Exp Ther Med, 2021 Feb;21(2):103.
    PMID: 33335566 DOI: 10.3892/etm.2020.9535
    The presence of certain soluble factors may provide a possible selective advantage for a parasite to gradually modify cell proliferation in neighbouring cells, which may result in chronic diseases. These soluble factors present in the conditioned medium also allow the parasite to invade rapidly into more host cells. The present study aimed to determine the levels of a group of type 1 T helper (Th1) cytokines in the conditioned media of host cells infected with parasites and in IL-21-silenced colorectal cancer cells. The conditioned media of human foreskin fibroblasts (HFFs) parasitized with the RH and ME49 strains of Toxoplasma gondii for 10 days were prepared, and subsequently the levels of the Th1 cytokines in the conditioned media were determined by ELISA. HFFs were incubated with the growth media containing selected soluble factors, and cell proliferation markers were subsequently analysed by reverse transcription-quantitative PCR. The mRNA expression level of cell proliferation markers was also examined in IL-21-silenced HCT116 cells, where the levels of soluble factors in the conditioned media were also determined as aforementioned. The results of the present study demonstrated that HFFs parasitized with ME49 released elevated levels of IFN-γ and lower levels of IL-18 into the conditioned medium compared with the controls. These phenomena were not observed in the conditioned medium of HFFs parasitized with RH. Similar levels of these soluble factors were also detected in the conditioned medium of IL-21-silenced HCT116 cells. The results of the present study also revealed that Ki67 and proliferating cell nuclear antigen mRNA expression was altered in host cells incubated with various levels of IFN-γ and IL-18, as well as in IL-21-silenced HCT116 cells compared with the respective controls. In conclusion, the current study provided preliminary evidence on the fundamental molecular mechanisms of host-parasite interactions that result in chronic diseases, which may aid in the treatment of these diseases in the relevant endemic regions.
    Matched MeSH terms: Interleukin-18
  19. Jinying W, Keming L, Hanqing T, Xuqing Z, Muccee F, Xuan L, et al.
    Mol Biol Rep, 2023 Nov;50(11):9367-9378.
    PMID: 37819498 DOI: 10.1007/s11033-023-08858-8
    OBJECTIVE: To observe the effects of acupuncture and moxibustion therapy on pain relief in sciatica rats and to explore the mechanism of its anti-inflammatory effect.

    METHODS: SPF grade 4-6-week-old Kunming rats were randomly divided into 5 groups including a blank group, sham-operated group, model group, acupuncture, and moxibustion (AnM) group, and positive group. A total of 10 rats were included in each group. The model group, the AnM group, and the positive group were prepared by ligating the left sciatic nerve. AnM group was used for acupuncture and moxibustion therapy intervention, and the positive group was rendered to quick-acting sciatica pills once a day for 7 days (3 courses of treatment). The blank group, sham-operated group, and model group were not treated. The changes in thermal and mechanical pain thresholds were observed before and after the operation, and the morphological changes of the dorsal horn of the spinal cord in the lumbosacral region of the rats in each group were observed by HE staining after the courses of treatment finished. The contents of IL-1β, IL-6, IL-18, and TNF-α were measured by ELISA and the expressions of NOX1, NOX2, NOX4, and NLRP3 genes were detected by RT-qPCR while the protein expressions of NOX1, NOX2, NOX4 and NLRP3 were analyzed by Western blotting.

    RESULTS: The AnM and positive group showed a significant increase in thermal and mechanical pain thresholds after treatment, while there was no significant change in the model group. As compared to the control group, the contents of IL- 1β, IL-6, IL-18, and TNF-α, as well as the relative expressions of NOX1, NOX2, NOX4, and NLRP3 genes were significantly increased in the model group (P 18, and TNF-α, as well as the relative expressions of NOX1, NOX2, NOX4, and NLRP3 genes significantly decreased in the AnM and positive groups (P 

    Matched MeSH terms: Interleukin-18
  20. Tan HY, Yong YK, Shankar EM, Paukovics G, Ellegård R, Larsson M, et al.
    J Immunol, 2016 05 15;196(10):4052-63.
    PMID: 27076678 DOI: 10.4049/jimmunol.1502203
    Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) complicates combination antiretroviral therapy (cART) in up to 25% of patients with HIV/TB coinfection. Monocytes and IL-18, a signature cytokine of inflammasome activation, are implicated in TB-IRIS pathogenesis. In this study, we investigated inflammasome activation both pre- and post-cART in TB-IRIS patients. HIV/TB patients exhibited higher proportions of monocytes expressing activated caspase-1 (casp1) pre-cART, compared with HIV patients without TB, and patients who developed TB-IRIS exhibited the greatest increase in casp1 expression. CD64(+) monocytes were a marker of increased casp1 expression. Furthermore, IL-1β, another marker of inflammasome activation, was also elevated during TB-IRIS. TB-IRIS patients also exhibited greater upregulation of NLRP3 and AIM2 inflammasome mRNA, compared with controls. Analysis of plasma mitochondrial DNA levels showed that TB-IRIS patients experienced greater cell death, especially pre-cART. Plasma NO levels were lower both pre- and post-cART in TB-IRIS patients, providing evidence of inadequate inflammasome regulation. Plasma IL-18 levels pre-cART correlated inversely with NO levels but positively with monocyte casp1 expression and mitochondrial DNA levels, and expression of IL-18Rα on CD4(+) T cells and NK cells was higher in TB-IRIS patients, providing evidence that IL-18 is a marker of inflammasome activation. We propose that inflammasome activation in monocytes/macrophages of HIV/TB patients increases with ineffective T cell-dependent activation of monocytes/macrophages, priming them for an excessive inflammatory response after cART is commenced, which is greatest in patients with TB-IRIS.
    Matched MeSH terms: Interleukin-18/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links