Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Joseph K, Ibrahim F, Cho J, Thio TH, Al-Faqheri W, Madou M
    PLoS One, 2015;10(9):e0136519.
    PMID: 26422249 DOI: 10.1371/journal.pone.0136519
    The development of micro-power generators for centrifugal microfluidic discs enhances the platform as a green point-of-care diagnostic system and eliminates the need for attaching external peripherals to the disc. In this work, we present micro-power generators that harvest energy from the disc's rotational movement to power biomedical applications on the disc. To implement these ideas, we developed two types of micro-power generators using piezoelectric films and an electromagnetic induction system. The piezoelectric-based generator takes advantage of the film's vibration during the disc's rotational motion, whereas the electromagnetic induction-based generator operates on the principle of current generation in stacks of coil exposed to varying magnetic flux. We have successfully demonstrated that at the spinning speed of 800 revolutions per minute (RPM) the piezoelectric film-based generator is able to produce up to 24 microwatts using 6 sets of films and the magnetic induction-based generator is capable of producing up to 125 milliwatts using 6 stacks of coil. As a proof of concept, a custom made localized heating system was constructed to test the capability of the magnetic induction-based generator. The heating system was able to achieve a temperature of 58.62 °C at 2200 RPM. This development of lab-on-a-disc micro power generators preserves the portability standards and enhances the future biomedical applications of centrifugal microfluidic platforms.
    Matched MeSH terms: Lab-On-A-Chip Devices*
  2. Yap BK, M Soair SN, Talik NA, Lim WF, Mei I L
    Sensors (Basel), 2018 Aug 10;18(8).
    PMID: 30103424 DOI: 10.3390/s18082625
    Over the past 20 years, rapid technological advancement in the field of microfluidics has produced a wide array of microfluidic point-of-care (POC) diagnostic devices for the healthcare industry. However, potential microfluidic applications in the field of nutrition, specifically to diagnose iron deficiency anemia (IDA) detection, remain scarce. Iron deficiency anemia is the most common form of anemia, which affects billions of people globally, especially the elderly, women, and children. This review comprehensively analyzes the current diagnosis technologies that address anemia-related IDA-POC microfluidic devices in the future. This review briefly highlights various microfluidics devices that have the potential to detect IDA and discusses some commercially available devices for blood plasma separation mechanisms. Reagent deposition and integration into microfluidic devices are also explored. Finally, we discuss the challenges of insights into potential portable microfluidic systems, especially for remote IDA detection.
    Matched MeSH terms: Lab-On-A-Chip Devices*
  3. Yunus, N.A.M., Jaafar, H., Halin, I.A., Green, N.G.
    ASM Science Journal, 2014;8(1):29-35.
    MyJurnal
    This paper presents a suitable and unique system for observing dielectrophoretic particle separation in a microfluidic device. Details presented on the experimental setup used will enable real time examination, monitoring and analysis of carboxylate-modified latex sphere particles in a colloidal mixture. Observations of the particles were made possible through an optical setup that illuminates the particles that went through the microelectrode array in the microchannel that was controlled by two analog signal generators. Through the setup, it was easily observed that the latex sphere particles move at a flow rate of 0.2 μl/s without colliding or overlapping on each other and successfully separated in two bands left and right. The new separation of one finest particles size for finest purification with respect to frequency was also observed, obtained and analysed.
    Matched MeSH terms: Lab-On-A-Chip Devices
  4. Futane A, Senthil M, S J, Srinivasan A, R K, Narayanamurthy V
    Anal Methods, 2023 Sep 14;15(35):4405-4426.
    PMID: 37646163 DOI: 10.1039/d3ay01089a
    With increasing population there is a rise in pathological diseases that the healthcare facilities are grappling with. Sweat-based wearable technologies for continuous monitoring have overcome the demerits associated with sweat sampling and sensing. Hence, sweat as an alternative biofluid holds great promise for the quantification of a host of biomarkers and understanding the functioning of the body, thereby deducing ailments quickly and economically. This comprehensive review accounts for recent advances in sweat-based LOCs (Lab-On-Chips), which are a likely alternative to the existing blood-urea sample testing that is invasive and time-consuming. The present review is focused on the advancements in sweat-based Lab-On-Chips (LOCs) as an alternative to invasive and time-consuming blood-urea sample testing. In addition, different sweat collection methods (direct skin, near skin and microfluidic) and their mechanism for urea sensing are explained in detail. The mechanism of urea in biofluids in protein metabolism, balancing nitrogen levels and a crucial factor of kidney function is described. In the end, research and technological advancements are explained to address current challenges and enable its widespread implementation.
    Matched MeSH terms: Lab-On-A-Chip Devices
  5. Davoodi H, Nordin N, Bordonali L, Korvink JG, MacKinnon N, Badilita V
    Lab Chip, 2020 08 26;20(17):3202-3212.
    PMID: 32734975 DOI: 10.1039/d0lc00364f
    Combining microfluidic devices with nuclear magnetic resonance (NMR) has the potential of unlocking their vast sample handling and processing operation space for use with the powerful analytics provided by NMR. One particularly challenging class of integrated functional elements from the perspective of NMR are conductive structures. Metallic electrodes could be used for electrochemical sample interaction for example, yet they can cause severe NMR spectral and SNR degradation. These issues are more entangled at the micro-scale since the distorted volume occupies a higher ratio of the sample volume. In this study, a combination of simulation and experimental validation was used to identify an electrode geometry that, in terms of NMR spectral parameters, performs as well as for the case when no electrodes are present. By placing the metal tracks in the side-walls of a microfluidic channel, we found that NMR RF excitation performance was actually enhanced, without compromising B0 homogeneity. Monitoring in situ deposition of chitosan in the microfluidic platform is presented as a proof-of-concept demonstration of NMR characterisation of an electrochemical process.
    Matched MeSH terms: Lab-On-A-Chip Devices
  6. Elpa DP, Prabhu GRD, Wu SP, Tay KS, Urban PL
    Talanta, 2020 Feb 01;208:120304.
    PMID: 31816721 DOI: 10.1016/j.talanta.2019.120304
    The developments in mass spectrometry (MS) in the past few decades reveal the power and versatility of this technology. MS methods are utilized in routine analyses as well as research activities involving a broad range of analytes (elements and molecules) and countless matrices. However, manual MS analysis is gradually becoming a thing of the past. In this article, the available MS automation strategies are critically evaluated. Automation of analytical workflows culminating with MS detection encompasses involvement of automated operations in any of the steps related to sample handling/treatment before MS detection, sample introduction, MS data acquisition, and MS data processing. Automated MS workflows help to overcome the intrinsic limitations of MS methodology regarding reproducibility, throughput, and the expertise required to operate MS instruments. Such workflows often comprise automated off-line and on-line steps such as sampling, extraction, derivatization, and separation. The most common instrumental tools include autosamplers, multi-axis robots, flow injection systems, and lab-on-a-chip. Prototyping customized automated MS systems is a way to introduce non-standard automated features to MS workflows. The review highlights the enabling role of automated MS procedures in various sectors of academic research and industry. Examples include applications of automated MS workflows in bioscience, environmental studies, and exploration of the outer space.
    Matched MeSH terms: Lab-On-A-Chip Devices
  7. Balakrishnan SR, Hashim U, Gopinath SC, Poopalan P, Ramayya HR, Iqbal Omar M, et al.
    PLoS One, 2015;10(9):e0137891.
    PMID: 26368287 DOI: 10.1371/journal.pone.0137891
    Human chorionic gonadotropin (hCG), a glycoprotein hormone secreted from the placenta, is a key molecule that indicates pregnancy. Here, we have designed a cost-effective, label-free, in situ point-of-care (POC) immunosensor to estimate hCG using a cuneated 25 nm polysilicon nanogap electrode. A tiny chip with the dimensions of 20.5 × 12.5 mm was fabricated using conventional lithography and size expansion techniques. Furthermore, the sensing surface was functionalized by (3-aminopropyl)triethoxysilane and quantitatively measured the variations in hCG levels from clinically obtained human urine samples. The dielectric properties of the present sensor are shown with a capacitance above 40 nF for samples from pregnant women; it was lower with samples from non-pregnant women. Furthermore, it has been proven that our sensor has a wide linear range of detection, as a sensitivity of 835.88 μA mIU(-1) ml(-2) cm(-2) was attained, and the detection limit was 0.28 mIU/ml (27.78 pg/ml). The dissociation constant Kd of the specific antigen binding to the anti-hCG was calculated as 2.23 ± 0.66 mIU, and the maximum number of binding sites per antigen was Bmax = 22.54 ± 1.46 mIU. The sensing system shown here, with a narrow nanogap, is suitable for high-throughput POC diagnosis, and a single injection can obtain triplicate data or parallel analyses of different targets.
    Matched MeSH terms: Lab-On-A-Chip Devices*
  8. Razzak MA, Hamid SB, Ali ME
    PMID: 26437367 DOI: 10.1080/19440049.2015.1087060
    Food forgery has posed considerable risk to public health, religious rituals, personal budget and wildlife. Pig, dog, cat, rat and monkey meat are restricted in most religions, but their sporadic adulteration are rampant. Market controllers need a low-cost but reliable technique to track and trace suspected species in the food chain. Considering the need, here we documented a lab-on-a-chip-based multiplex polymerase chain reaction (PCR) assay for the authentication of five non-halal meat species in foods. Using species-specific primers, 172, 163, 141, 129 and 108-bp sites of mitochondrial ND5, ATPase 6 and cytochrome b genes were amplified to detect cat, dog, pig, monkey and rat species under complex matrices. Species-specificity was authenticated against 20 different species with the potential to be used in food. The targets were stable under extreme sterilisation (121°C at 45 psi for 2.5 h) which severely degrades DNA. The assay was optimised under the backgrounds of various commercial meat products and validated for the analysis of meatballs, burgers and frankfurters, which are popular fast food items across the globe. The assay was tested to detect 0.1% suspected meats under commercial backgrounds of marketed foods. Instead of simplex PCR which detects only one species at a time, such a multiplex platform can reduce cost by at least fivefolds by detecting five different species in a single assay platform.
    Matched MeSH terms: Lab-On-A-Chip Devices*
  9. Ali ME, Al Amin M, Hamid SB, Hossain MA, Mustafa S
    PMID: 26208950 DOI: 10.1080/19440049.2015.1075068
    Wider availability but lack of legal market trades has given feline meat a high potential for use as an adulterant in common meat and meat products. However, mixing of feline meat or its derivatives in food is a sensitive issue, since it is a taboo in most countries and prohibited in certain religions such as Islam and Judaism. Cat meat also has potential for contamination with of severe acute respiratory syndrome, anthrax and hepatitis, and its consumption might lead to an allergic reaction. We developed a very short-amplicon-length (69 bp) PCR assay, authenticated the amplified PCR products by AluI-restriction digestion followed by its separation and detection on a lab-on-a-chip-based automated electrophoretic system, and proved its superiority over the existing long-amplicon-based assays. Although it has been assumed that longer DNA targets are susceptible to breakdown under compromised states, scientific evidence for this hypothesis has been rarely documented. Strong evidence showed that shorter targets are more stable than the longer ones. We confirmed feline-specificity by cross-challenging the primers against 10 different species of terrestrial, aquatic and plant origins in the presence of a 141-bp site of an 18S rRNA gene as a universal eukaryotic control. RFLP analysis separated 43- and 26-bp fragments of AluI-digest in both the gel-image and electropherograms, confirming the original products. The tested detection limit was 0.01% (w/w) feline meat in binary and ternary admixed as well as meatball matrices. Shorter target, better stability and higher sensitivity mean such an assay would be valid for feline identification even in degraded specimens.
    Matched MeSH terms: Lab-On-A-Chip Devices*
  10. Md Ali MA, Kayani ABA, Yeo LY, Chrimes AF, Ahmad MZ, Ostrikov KK, et al.
    Biomed Microdevices, 2018 11 06;20(4):95.
    PMID: 30402766 DOI: 10.1007/s10544-018-0341-1
    Cell contact formation, which is the process by which cells are brought into close proximity is an important biotechnological process in cell and molecular biology. Such manipulation is achieved by various means, among which dielectrophoresis (DEP) is widely used due to its simplicity. Here, we show the advantages in the judicious choice of the DEP microelectrode configuration in terms of limiting undesirable effects of dielectric heating on the cells, which could lead to their inactivation or death, as well as the possibility for cell clustering, which is particularly advantageous over the linear cell chain arrangement typically achieved to date with DEP. This study comprises of experimental work as well as mathematical modeling using COMSOL. In particular, we establish the parameters in a capillary-based microfluidic system giving rise to these optimum cell-cell contact configurations, together with the possibility for facilitating other cell manipulations such as spinning and rotation, thus providing useful protocols for application into microfluidic bioparticle manipulation systems for diagnostics, therapeutics or for furthering research in cellular bioelectricity and intercellular interactions.
    Matched MeSH terms: Lab-On-A-Chip Devices*
  11. Wicaksono DH, Syazwani IN, Ratnarathorn N, Sadir S, Shahir S, Ruckthong L, et al.
    Bioanalysis, 2019 May;11(9):855-873.
    PMID: 31084195 DOI: 10.4155/bio-2018-0190
    Aim: Time-based microfluidic absorption sampling was proposed using cotton fiber-based device made in swab stick. The assay was optimized and compared with conventional pipetted drop sampling using the same device. Materials & methods: Reagents were integrated into cotton fiber device for assessing concentration of analytes by the colorimetric detection method through time-based absorption sampling microfluidic system. All assay parameters were first optimized using conventional pipette-based drop sampling. Results: The color intensity is linear in the relevant concentration range of the analytes. The LOD are 0.189 mM for glucose and 6.56 μM for nitrite, respectively. These values are better than conventional drop sampling. The fiber-containing swab itself functions as sampling, assay and calibration device. Conclusion: Microfluidic cotton fiber-based assay device was fabricated and can determine analyte concentration in artificial salivary samples, colorimetrically, by time-based absorption sampling without the need of complex equipments.
    Matched MeSH terms: Lab-On-A-Chip Devices*
  12. Aziz MS, Jukgoljan B, Daud S, Tan TS, Ali J, Yupapin PP
    Artif Cells Nanomed Biotechnol, 2013 Jun;41(3):178-83.
    PMID: 22991944 DOI: 10.3109/10731199.2012.715087
    This paper presents the use of a modified add/drop optical filter incorporating with microring resonators known as a PANDA microring resonator system which can fabricate on small chip. By using an optical tweezer, the required molecules can be trapped and moved to the required destinations at the add/drop ports. The novelty is that the stored molecules in the designed chip can transport via the optical waveguide and can also be used to form molecular filter, which is an important technique for drug delivery, drug targeting, and molecular electronics. Results have shown that the multivariable filter can be obtained by tunable trapping control.
    Matched MeSH terms: Lab-On-A-Chip Devices
  13. Hosseini S, Aeinehvand MM, Uddin SM, Benzina A, Rothan HA, Yusof R, et al.
    Sci Rep, 2015;5:16485.
    PMID: 26548806 DOI: 10.1038/srep16485
    The application of microfluidic devices in diagnostic systems is well-established in contemporary research. Large specific surface area of microspheres, on the other hand, has secured an important position for their use in bioanalytical assays. Herein, we report a combination of microspheres and microfluidic disk in a unique hybrid platform for highly sensitive and selective detection of dengue virus. Surface engineered polymethacrylate microspheres with carefully designed functional groups facilitate biorecognition in a multitude manner. In order to maximize the utility of the microspheres' specific surface area in biomolecular interaction, the microfluidic disk was equipped with a micromixing system. The mixing mechanism (microballoon mixing) enhances the number of molecular encounters between spheres and target analyte by accessing the entire sample volume more effectively, which subsequently results in signal amplification. Significant reduction of incubation time along with considerable lower detection limits were the prime motivations for the integration of microspheres inside the microfluidic disk. Lengthy incubations of routine analytical assays were reduced from 2 hours to 5 minutes while developed system successfully detected a few units of dengue virus. Obtained results make this hybrid microsphere-microfluidic approach to dengue detection a promising avenue for early detection of this fatal illness.
    Matched MeSH terms: Lab-On-A-Chip Devices
  14. Al Amin M, Mahfujur Rahman M, Razimi MSA, Chowdhury ZZ, Hussain MNM, Desa MNM
    J Food Compost Anal, 2020 Sep;92:103565.
    PMID: 32546895 DOI: 10.1016/j.jfca.2020.103565
    Determination of feline meat in food products is an important issue for social, health, economic and religious concern. Hence this paper documented the application of species specific polymerase chain reaction-restriction fragment length polymorphism (SP-PCR-RFLP) assay targeting a short-fragments (69 bp) of mitochondrial cytochrome b (cytb) gene to screen feline meat in commercial meat products using lab-on-a-chip. The SP-PCR assay proved its specificity theoretically and experimentally while testing with different common animal, aquatic and plant species of DNA. The feline specific (69 bp, 43- and 26-bp) characteristic molecular DNA pattern was observed by SP-PCR and RFLP analysis. For assay performance, it was tested in three different types of commercial dummy meat products such as frankfurters, nuggets and meatballs and digested with AluI-restriction enzyme. The highest sensitivity of the assay using lab-on-a-chip was as low as 0.1 pg or 0.01 % (w/w) in commercial dummy meat products. We have also applied this assay to screen three important commercial meat products of six different brand from six supermarket chains located at three different states of Malaysia. Thus total 378 samples were tested to validate the specificity, sensitivity, stability of the assay and utilization of it for commercial meat product screening.
    Matched MeSH terms: Lab-On-A-Chip Devices
  15. Balakrishnan SR, Hashim U, Gopinath SC, Poopalan P, Ramayya HR, Veeradasan P, et al.
    Biosens Bioelectron, 2016 Oct 15;84:44-52.
    PMID: 26560969 DOI: 10.1016/j.bios.2015.10.075
    Rationally designed biosensing system supports multiplex analyses is warranted for medical diagnosis to determine the level of analyte interaction. The chemically functionalized novel multi-electrode polysilicon nanogap (PSNG) lab-on-chip is designed in this study, facilitates multiplex analyses for a single analyte. On the fabricated 69nm PSNG, biocompatibility and structural characteristics were verified for the efficient binding of Human Chorionic Gonadotropin (hCG). With the assistance of microfluidics, hCG sample was delivered via single-injection to 3-Aminopropyl(triethoxy)silane (APTES) and Glycidoxypropyl(trimethoxy)silane (GPMS) modified PSNG electrodes and the transduced signal was used to investigate the dielectric mechanisms for multiplex analyses. The results from amperometric response and impedance measurement delivered the scale of interaction between anti-hCG antibody and hCG that exhibited 6.5 times higher sensitivity for the chemical linker, APTES than GPMS. Under optimized experimental conditions, APTES and GPMS modified immunosensor has a limit of detection as 0.56mIU/ml and 2.93mIU/ml (at S/N=3), with dissociation constants (Kd) of 5.65±2.5mIU/ml and 7.28±2.6mIU/ml, respectively. These results suggest that multiplex analysis of single target could enhance the accuracy of detection and reliable for real-time comparative analyses. The designed PSNG is simple, feasible, requires low sample consumption and could be applied for any given multiplex analyses.
    Matched MeSH terms: Lab-On-A-Chip Devices*
  16. Rajan S, Shen TH, Santhanam J, Othman NH, Othman N, Hock TT
    Trop Biomed, 2007 Jun;24(1):17-22.
    PMID: 17568373
    Human papillomavirus (HPV) is well known as an etiological factor for the development of anogenital carcinomas. The aim of our study was to compare the performance of USFDA approved Hybrid II (HCII) Assay and recently introduced DR. HPV Chip Kit for the detection of HPV DNA in clinical cervical scrapings from 40 patients. HPV DNA testing was performed using the automated HCII Assay system and DR. HPV Chip Kit. Taking cytological results as gold standard, it was found that HCII was more sensitive (36.4%) than DR. HPV Chip Kit (18.2%) although specificity was 100% with the latter method. In addition, both these molecular methods had comparable negative and positive predictive values. It was concluded that both HCII and DR. HPV Chip Kit have comparable specificity. However, sensitivity for detection of HPV in clinical samples with HCII is almost double as compared to DR. HPV Chip Kit.
    Matched MeSH terms: Lab-On-A-Chip Devices*
  17. Thiha A, Ibrahim F, Muniandy S, Dinshaw IJ, Teh SJ, Thong KL, et al.
    Biosens Bioelectron, 2018 Jun 01;107:145-152.
    PMID: 29455024 DOI: 10.1016/j.bios.2018.02.024
    Nanowire sensors offer great potential as highly sensitive electrochemical and electronic biosensors because of their small size, high aspect ratios, and electronic properties. Nevertheless, the available methods to fabricate carbon nanowires in a controlled manner remain limited to expensive techniques. This paper presents a simple fabrication technique for sub-100 nm suspended carbon nanowire sensors by integrating electrospinning and photolithography techniques. Carbon Microelectromechanical Systems (C-MEMS) fabrication techniques allow fabrication of high aspect ratio carbon structures by patterning photoresist polymers into desired shapes and subsequent carbonization of resultant structures by pyrolysis. In our sensor platform, suspended nanowires were deposited by electrospinning while photolithography was used to fabricate support structures. We have achieved suspended carbon nanowires with sub-100 nm diameters in this study. The sensor platform was then integrated with a microfluidic chip to form a lab-on-chip device for label-free chemiresistive biosensing. We have investigated this nanoelectronics label-free biosensor's performance towards bacterial sensing by functionalization with Salmonella-specific aptamer probes. The device was tested with varying concentrations of Salmonella Typhimurium to evaluate sensitivity and various other bacteria to investigate specificity. The results showed that the sensor is highly specific and sensitive in detection of Salmonella with a detection limit of 10 CFU mL-1. Moreover, this proposed chemiresistive assay has a reduced turnaround time of 5 min and sample volume requirement of 5 µL which are much less than reported in the literature.
    Matched MeSH terms: Lab-On-A-Chip Devices*
  18. Li Z, Gopinath SCB, Lakshmipriya T, Anbu P, Perumal V, Wang X
    Biomed Microdevices, 2020 Sep 17;22(4):67.
    PMID: 32940771 DOI: 10.1007/s10544-020-00522-3
    Nanoscale materials have been employed in the past 2 decades in applications such as biosensing, therapeutics and medical diagnostics due to their beneficial optoelectronic properties. In recent years, silver nanoparticles (AgNPs) have gained attention due to their higher plasmon excitation efficiency than gold nanoparticles, as proved by sharper and stronger plasmon resonance peaks. The current work is focused on utilizing self-assembled DNA-AgNPs on microdevices for the detection of gynecological cancers. Human papilloma virus (HPV) mostly spreads through sexual transmittance and can cause various gynecological cancers, including cervical, ovarian and endometrial cancers. In particular, oncogene E7 from the HPV strain 16 (HPV-16 E7) is responsible for causing these cancers. In this research, the target sequence of HPV-16 E7 was detected by an AgNP-conjugated capture probe on a dielectrode sensor. The detection limit was in the range between 10 and 100 aM (by 3σ estimation). The sensitivity of the AgNP-conjugated probe was 10 aM and similar to the sensitivity of gold nanoparticle conjugation sensors, and the mismatched control DNA failed to detect the target, proving selective HPV detection. Morphological assessments on the AgNPs and the sensing surfaces by high-resolution microscopy revealed the surface arrangement. This sensing platform can be expanded to develop sensors for the detection various clinically relevant targets.
    Matched MeSH terms: Lab-On-A-Chip Devices
  19. Lim WY, Thevarajah TM, Goh BT, Khor SM
    Biosens Bioelectron, 2019 Mar 01;128:176-185.
    PMID: 30685097 DOI: 10.1016/j.bios.2018.12.049
    The early detection of acute myocardial infarction (AMI) upon the onset of chest pain symptoms is crucial for patient survival. However, this detection is challenging, particularly without a persistent elevation of ST-segment reflected in an electrocardiogram or in blood tests. A majority of the available point-of-care testing devices allow accurate and rapid diagnosis of AMI. However, AMI diagnosis is reliable only at intermediate and later stages, with myocardial injury (> 6 h) and MI, based on the expression of specific cardiac biomarkers including troponin I or T (cTnI or cTnT), creatine kinase-MB (CK-MB), and myoglobin. Diagnosis at the early myocardial ischemia stage is not possible. To overcome this limitation, a sensitive and rapid microfluidic paper-based device (µPAD) was developed for the simultaneous detection of multiple cardiac biomarkers for the early and late diagnosis of AMI. The glycogen phosphorylase isoenzyme BB (GPBB) was detected during early (within first 4 h) ischemic myocardial injury. On the same µPAD platform, detection of prolonged elevation of levels of cTnT and CK-MB, which are only produced 6 h after the onset of chest pain in human serum, was possible. Sandwich immunoassay performed on the µPAD achieved reproducibility (RSD approximately 10% and intra-and inter-day precision (CV 10-20%, 99th percentile), as well as consistently stable test results for 28 days, with strong correlation (r2= 0.962), using the standard Siemens Centaur XPT Immunoassay system. The present findings indicate the potential of the µPAD platform as a point-of-care device for the early diagnosis and prognosis of AMI.
    Matched MeSH terms: Lab-On-A-Chip Devices
  20. Idros N, Chu D
    ACS Sens, 2018 09 28;3(9):1756-1764.
    PMID: 30193067 DOI: 10.1021/acssensors.8b00490
    Heavy metals are highly toxic at trace levels and their pollution has shown great threat to the environment and public health worldwide where current detection methods require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Herein, we report a low-cost, paper-based microfluidic analytical device (μPAD) for facile, portable, and disposable monitoring of mercury, lead, chromium, nickel, copper, and iron ions. Triple indicators or ligands that contain ions or molecules are preloaded on the μPADs and upon addition of a metal ion, the colorimetric indicators will elicit color changes observed by the naked eyes. The color features were quantitatively analyzed in a three-dimensional space of red, green, and blue or the RGB-space using digital imaging and color calibration techniques. The sensing platform offers higher accuracy for cross references, and is capable of simultaneous detection and discrimination of different metal ions in even real water samples. It demonstrates great potential for semiquantitative and even qualitative analysis with a sensitivity below the safe limit concentrations, and a controlled error range.
    Matched MeSH terms: Lab-On-A-Chip Devices
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links