AIM: This study aims to develop a real-time polymerase chain reaction (RT-PCR) analysis method to analyze the presence of RM in beef meatballs.
METHODS: This research was carried out in the following stages: primer design, DNA isolation, analysis of DNA isolates, the optimization of primer annealing temperature, primer specificity test, sensitivity, and repeatability. The validated RT-PCR method was then used to analyze the marketed meatball samples.
RESULTS: The result showed that the designed primer targeting on ND2 gene set rat mt-DNA (forward: ACTCCATATCTCTCACCATATTTCC; reverse: GGGTTAGGGTACTTAGGATTGTTAG), had good specificity at an optimal annealing temperature of 56.3oC over the other eight species. The developed RT-PCR method produces a limit detection value of 195.31 pg, coefficient of determination (R 2) for linearity of 0.983, amplification efficiency (E) of 100%, and CV value for amplification response of 1.8%. The result showed that the developed RT-PCR method did not detect the presence of RM DNA in eight marketed beef meatball samples.
CONCLUSION: The developed method meets the acceptance criteria for RT-PCR and can be used as a halal authentication method to identify the presence of RM in beef meatballs.
OBJECTIVE: To characterize and evaluate the plant-based alternatives available on the market in Spain in comparison to animal products in terms of their nutritional composition and profile, and degree of processing.
METHODS: Nutritional information for PBAPs and homologs were obtained from the Spanish 'Veggie base', branded food composition database. Five PBAPs categories (cheese, dairy products, eggs, meat, and fish, n = 922) were compared to animal-based processed (n = 922) and unprocessed (n = 381) homologs, using the modified version of the Food Standard Agency Nutrient Profiling System (FSAm-NPS score) and NOVA classification criteria.
RESULTS: Compared to processed or unprocessed animal food, PBAPs contain significantly higher sugar, salt, and fiber. PBAPs for fish, seafood, and meat were lower in protein and saturated fatty acids. Overall, 68% of PBAPs, 43% of processed and 75% of unprocessed animal-homologs had Nutri-Score ratings of A or B (most healthy). About 17% of PBAPs, 35% of processed and 13% of unprocessed animal-based food were in Nutri-Score categories D or E (least healthy). Dairy, fish, and meat alternatives had lower FSAm-NPS scores (most healthy), while cheese alternatives scored higher (least healthy) than animal-based homologs. Unprocessed fish and meat were healthier than similar PBAPs based on FSAm-NPS criteria. Approximately 37% of PBAPs and 72% of processed animal-based products were ultra-processed food (NOVA group 4). Within the ultra-processed food group, Nutri-Score varied widely.
CONCLUSIONS: Most PBAPs had better nutrient profile than animal-based homologs. However, cheese, fish and meats PBAPs had poorer nutrient profile and were more processed. Given the high degree of processing and variable nutritional profile, PBAPs require a multi-dimensional evaluation of their health impact.