METHODS: Six hemi-mandible samples were scanned using the i-CAT CBCT system. The scanned data was transferred to the OsiriX software for measurement protocol and subsequently into Mimics software to fabricate customized cutting jigs and 3D biomodels based on rapid prototyping technology. The hemi-mandibles were segmented into 5 dentoalveolar blocks using the customized jigs. Digital calliper was used to measure six distances surrounding the mandibular canal on each section. The same distances were measured on the corresponding cross-sectional OsiriX images and the 3D biomodels of each dentoalveolar block.
RESULTS: Statistically no significant difference was found when measurements from OsiriX images and 3D biomodels were compared to the "gold standard" -direct digital calliper measurement of the cadaveric dentoalveolar blocks. Moreover, the mean value difference of the various measurements between the different study components was also minimal.
CONCLUSION: Various distances surrounding the mandibular canal from 3D biomodels produced from the CBCT scanned data was similar to that of direct digital calliper measurements of the cadaveric specimens.
METHODS: All relevant studies were identified through keyword searches in electronic databases from inception until September 2020. The searched publications were reviewed, categorised and analysed based on their respective methodology.
RESULTS: Hundred and one publications were identified which utilised existing MC-based applications/programs or customised MC simulations. Two outstanding challenges were identified that contribute to uncertainties in the virtual simulation reconstruction. The first challenge involves the use of anatomical models to represent individuals. Currently, phantom libraries best balance the needs of clinical practicality with those of specificity. However, mismatches of anatomical variations including body size and organ shape can create significant discrepancies in dose estimations. The second challenge is that the exact positioning of the patient relative to the beam is generally unknown. Most dose prediction models assume the patient is located centrally on the examination couch, which can lead to significant errors.
CONCLUSION: The continuing rise of computing power suggests a near future where MC methods become practical for routine clinical dosimetry. Dynamic, deformable phantoms help to improve patient specificity, but at present are only limited to adjustment of gross body volume. Dynamic internal organ displacement or reshaping is likely the next logical frontier. Image-based alignment is probably the most promising solution to enable this, but it must be automated to be clinically practical.