Displaying all 10 publications

Abstract:
Sort:
  1. Azuan NH, Khairunniza-Bejo S, Abdullah AF, Kassim MSM, Ahmad D
    Plant Dis, 2019 Dec;103(12):3218-3225.
    PMID: 31596688 DOI: 10.1094/PDIS-10-18-1721-RE
    Basal stem rot (BSR), caused by the Ganoderma fungus, is an infectious disease that affects oil palm (Elaeis guineensis) plantations. BSR leads to a significant economic loss and reductions in yields of up to Malaysian Ringgit (RM) 1.5 billion (US$400 million) yearly. By 2020, the disease may affect ∼1.7 million tonnes of fresh fruit bunches. The plants appear symptomless in the early stages of infection, although most plants die after they are infected. Thus, early, accurate, and nondestructive disease detection is crucial to control the impact of the disease on yields. Terrestrial laser scanning (TLS) is an active remote-sensing, noncontact, cost-effective, precise, and user-friendly method. Through high-resolution scanning of a tree's dimension and morphology, TLS offers an accurate indicator for health and development. This study proposes an efficient image processing technique using point clouds obtained from TLS ground input data. A total of 40 samples (10 samples for each severity level) of oil palm trees were collected from 9-year-old trees using a ground-based laser scanner. Each tree was scanned four times at a distance of 1.5 m. The recorded laser scans were synched and merged to create a cluster of point clouds. An overhead two-dimensional image of the oil palm tree canopy was used to analyze three canopy architectures in terms of the number of pixels inside the crown (crown pixel), the degree of angle between fronds (frond angle), and the number of fronds (frond number). The results show that the crown pixel, frond angle, and frond number are significantly related and that the BSR severity levels are highly correlated (R2 = 0.76, P < 0.0001; R2 = 0.96, P < 0.0001; and R2 = 0.97, P < 0.0001, respectively). Analysis of variance followed post hoc tests by Student-Newman-Keuls (Newman-Keuls) and Dunnett for frond number presented the best results and showed that all levels were significantly different at a 5% significance level. Therefore, the earliest stage that a Ganoderma infection could be detected was mildly infected (T1). For frond angle, all post hoc tests showed consistent results, and all levels were significantly separated except for T0 and T1. By using the crown pixel parameter, healthy trees (T0) were separated from unhealthy trees (moderate infection [T2] and severe infection [T3]), although there was still some overlap with T1. Thus, Ganoderma infection could be detected as early as the T2 level by using the crown pixel and the frond angle parameters. It is hard to differentiate between T0 and T1, because during mild infection, the symptoms are highly similar. Meanwhile, T2 and T3 were placed in the same group, because they showed the same trend. This study demonstrates that the TLS is useful for detecting low-level infection as early as T1 (mild severity). TLS proved beneficial in managing oil palm plantation disease.
    Matched MeSH terms: Plant Stems/microbiology
  2. Oladosu Y, Rafii MY, Abdullah N, Magaji U, Hussin G, Ramli A, et al.
    Biomed Res Int, 2016;2016:7985167.
    PMID: 27429981 DOI: 10.1155/2016/7985167
    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw.
    Matched MeSH terms: Plant Stems/microbiology*
  3. Maznah Z, Halimah M, Ismail S, Idris AS
    Environ Sci Pollut Res Int, 2015 Dec;22(24):19648-57.
    PMID: 26276276 DOI: 10.1007/s11356-015-5178-z
    Hexaconazole is a potential fungicide to be used in the oil palm plantation for controlling the basal stem root (BSR) disease caused by Ganoderma boninense. Therefore, the dissipation rate of hexaconazole in an oil palm agroecosystem under field conditions was studied. Two experimental plots were treated with hexaconazole at the recommended dosage of 4.5 g a.i. palm(-1) (active ingredient) and at double the recommended dosage (9.0 g a.i. palm(-1)), whilst one plot was untreated as control. The residue of hexaconazole was detected in soil samples in the range of 2.74 to 0.78 and 7.13 to 1.66 mg kg(-1) at the recommended and double recommended dosage plots, respectively. An initial relatively rapid dissipation rate of hexaconazole residues occurred but reduced with time. The dissipation of hexaconazole in soil was described using first-order kinetics with the value of coefficient regression (r (2) > 0.8). The results indicated that hexaconazole has moderate persistence in the soil and the half-life was found to be 69.3 and 86.6 days in the recommended and double recommended dosage plot, respectively. The results obtained highlight that downward movement of hexaconazole was led by preferential flow as shown in image analysis. It can be concluded that varying soil conditions, environmental factors, and pesticide chemical properties of hexaconazole has a significant impact on dissipation of hexaconazole in soil under humid conditions.
    Matched MeSH terms: Plant Stems/microbiology
  4. Gan HM, McGroty SE, Chew TH, Chan KG, Buckley LJ, Savka MA, et al.
    J Bacteriol, 2012 Nov;194(21):5981-2.
    PMID: 23045495 DOI: 10.1128/JB.01469-12
    Enterobacter sp. strain SST3 is an endophytic bacterium isolated from Saccharum spp. Here we present its annotated draft genome that may shed light on its role as a bacterial endophyte of sugarcane. To our knowledge, this is the first genome announcement of a sugarcane-associated bacterium from the genus Enterobacter.
    Matched MeSH terms: Plant Stems/microbiology
  5. Husin NA, Khairunniza-Bejo S, Abdullah AF, Kassim MSM, Ahmad D, Azmi ANN
    Sci Rep, 2020 04 15;10(1):6464.
    PMID: 32296108 DOI: 10.1038/s41598-020-62275-6
    Ground-based LiDAR also known as Terrestrial Laser Scanning (TLS) technology is an active remote sensing imaging method said to be one of the latest advances and innovations for plant phenotyping. Basal Stem Rot (BSR) is the most destructive disease of oil palm in Malaysia that is caused by white-rot fungus Ganoderma boninense, the symptoms of which include flattening and hanging-down of the canopy, shorter leaves, wilting green fronds and smaller crown size. Therefore, until now there is no critical investigation on the characterisation of canopy architecture related to this disease using TLS method was carried out. This study proposed a novel technique of BSR classification at the oil palm canopy analysis using the point clouds data taken from the TLS. A total of 40 samples of oil palm trees at the age of nine-years-old were selected and 10 trees for each health level were randomly taken from the same plot. The trees were categorised into four health levels - T0, T1, T2 and T3, which represents the healthy, mildly infected, moderately infected and severely infected, respectively. The TLS scanner was mounted at a height of 1 m and each palm was scanned at four scan positions around the tree to get a full 3D image. Five parameters were analysed: S200 (canopy strata at 200 cm from the top), S850 (canopy strata at 850 cm from the top), crown pixel (number of pixels inside the crown), frond angle (degree of angle between fronds) and frond number. The results taken from statistical analysis revealed that frond number was the best single parameter to detect BSR disease as early as T1. In classification models, a linear model with a combination of parameters, ABD - A (frond number), B (frond angle) and D (S200), delivered the highest average accuracy for classification of healthy-unhealthy trees with an accuracy of 86.67 per cent. It also can classify the four severity levels of infection with an accuracy of 80 per cent. This model performed better when compared to the severity classification using frond number. The novelty of this research is therefore on the development of new approach to detect and classify BSR using point clouds data of TLS.
    Matched MeSH terms: Plant Stems/microbiology*
  6. Maluin FN, Hussein MZ, Azah Yusof N, Fakurazi S, Idris AS, Zainol Hilmi NH, et al.
    J Agric Food Chem, 2020 Apr 15;68(15):4305-4314.
    PMID: 32227887 DOI: 10.1021/acs.jafc.9b08060
    The rise of environmental and health concerns due to the excessive use of the conventional fungicide urges the search for sustainable alternatives of agronanofungicides where the latter is aimed to enhance plant uptake and minimize the volatilization, leaching, and runoff of fungicides. With this in mind, fungicides of hexaconazole and/or dazomet were encapsulated into chitosan nanoparticles for the formulation of chitosan-based agronanofungicides. In the present study, chitosan nanoparticles (2 nm), chitosan-hexaconazole nanoparticles (18 and 168 nm), chitosan-dazomet nanoparticles (7 and 32 nm), and chitosan-hexaconazole-dazomet nanoparticles (5 and 58 nm) were synthesized and used as potent antifungal agents in combating the basal stem rot (BSR) disease caused by Ganoderma boninense in which they were evaluated via an artificial inoculation of oil palm seedlings with the rubber woodblock, which was fully colonized with the fungal Ganoderma boninense mycelium. The results revealed that chitosan nanoparticles could act as dual modes of action, which are themselves as a biocide or as a nanocarrier for the existing fungicides. In addition, the particle size of the chitosan-based agronanofungicides plays a crucial role in suppressing and controlling the disease. The synergistic effect of the double-fungicide system of 5 nm chitosan-hexaconazole-dazomet nanoparticles can be observed as the system showed the highest disease reduction with 74.5%, compared to the untreated infected seedlings.
    Matched MeSH terms: Plant Stems/microbiology
  7. Nayan N, van Erven G, Kabel MA, Sonnenberg AS, Hendriks WH, Cone JW
    J Sci Food Agric, 2019 Jun;99(8):4054-4062.
    PMID: 30737799 DOI: 10.1002/jsfa.9634
    BACKGROUND: White rot fungi have been used to improve the nutritive value of lignocellulose for ruminants. In feed analysis, the Van Soest method is widely used to determine the cell wall contents. To assess the reliability of this method (Method A) for determination of cell wall contents in fungal-treated wheat straw, we compared a combined monosaccharide analysis and pyrolysis coupled to gas chromatography with mass spectrometry (Py-GC/MS) (Method B). Ruminal digestibility, measured as in vitro gas production (IVGP), was subsequently used to examine which method explains best the effect of fungal pretreatment on the digestibility of wheat straw.

    RESULTS: Both methods differed considerably in the mass recoveries of the individual cell wall components, which changed on how we assess their degradation characteristics. For example, Method B gave a higher degradation of lignin (61.9%), as compared to Method A (33.2%). Method A, however, showed a better correlation of IVGP with the ratio of lignin to total structural carbohydrates, as compared to Method B (Pearson's r of -0.84 versus -0.69). Nevertheless, Method B provides a more accurate quantification of lignin, reflecting its actual modification and degradation. With the information on the lignin structural features, Method B presents a substantial advantage in understanding the underlying mechanisms of lignin breakdown. Both methods, however, could not accurately quantify the cellulose contents - among others, due to interference of fungal biomass.

    CONCLUSION: Method A only accounts for the recalcitrant residue and therefore is more suitable for evaluating ruminal digestibility. Method B allows a more accurate quantification of cell wall, required to understand and better explains the actual modification of the cell wall. The suitability of both methods, therefore, depends on their intended purposes. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

    Matched MeSH terms: Plant Stems/microbiology
  8. Haruna E, Zin NM, Kerfahi D, Adams JM
    Microb Ecol, 2018 Jan;75(1):88-103.
    PMID: 28642991 DOI: 10.1007/s00248-017-1002-2
    The extent to which distinct bacterial endophyte communities occur between different plant organs and species is poorly known and has implications for bioprospecting efforts. Using the V3 region of the bacterial 16S ribosomal RNA (rRNA) gene, we investigated the diversity patterns of bacterial endophyte communities of three rainforest plant species, comparing leaf, stem, and root endophytes plus rhizosphere soil community. There was extensive overlap in bacterial communities between plant organs, between replicate plants of the same species, between plant species, and between plant organ and rhizosphere soil, with no consistent clustering by compartment or host plant species. The non-metric multidimensional scaling (NMDS) analysis highlighted an extensively overlapping bacterial community structure, and the β-nearest taxon index (βNTI) analysis revealed dominance of stochastic processes in community assembly, suggesting that bacterial endophyte operational taxonomic units (OTUs) were randomly distributed among plant species and organs and rhizosphere soil. Percentage turnover of OTUs within pairs of samples was similar both for plant individuals of the same species and of different species at around 80-90%. Our results suggest that sampling extra individuals, extra plant organs, extra species, or use of rhizosphere soil, might be about equally effective for obtaining new OTUs for culture. These observations suggest that the plant endophyte community may be much more diverse, but less predictable, than would be expected from culturing efforts alone.
    Matched MeSH terms: Plant Stems/microbiology
  9. Shariffah-Muzaimah SA, Idris AS, Madihah AZ, Dzolkhifli O, Kamaruzzaman S, Maizatul-Suriza M
    World J Microbiol Biotechnol, 2017 Dec 18;34(1):15.
    PMID: 29256103 DOI: 10.1007/s11274-017-2396-1
    Ganoderma boninense, the main causal agent of oil palm (Elaeis guineensis) basal stem rot (BSR), severely reduces oil palm yields around the world. To reduce reliance on fungicide applications to control BSR, we are investigating the efficacy of alternative control methods, such as the application of biological control agents. In this study, we used four Streptomyces-like actinomycetes (isolates AGA43, AGA48, AGA347 and AGA506) that had been isolated from the oil palm rhizosphere and screened for antagonism towards G. boninense in a previous study. The aim of this study was to characterize these four isolates and then to assess their ability to suppress BSR in oil palm seedlings when applied individually to the soil in a vermiculite powder formulation. Analysis of partial 16S rRNA gene sequences (512 bp) revealed that the isolates exhibited a very high level of sequence similarity (> 98%) with GenBank reference sequences. Isolates AGA347 and AGA506 showed 99% similarity with Streptomyces hygroscopicus subsp. hygroscopicus and Streptomyces ahygroscopicus, respectively. Isolates AGA43 and AGA48 also belonged to the Streptomyces genus. The most effective formulation, AGA347, reduced BSR in seedlings by 73.1%. Formulations using the known antifungal producer Streptomyces noursei, AGA043, AGA048 or AGA506 reduced BSR by 47.4, 30.1, 54.8 and 44.1%, respectively. This glasshouse trial indicates that these Streptomyces spp. show promise as potential biological control agents against Ganoderma in oil palm. Further investigations are needed to determine the mechanism of antagonism and to increase the shelf life of Streptomyces formulations.
    Matched MeSH terms: Plant Stems/microbiology*
  10. Rahnama N, Foo HL, Abdul Rahman NA, Ariff A, Md Shah UK
    BMC Biotechnol, 2014;14:103.
    PMID: 25496491 DOI: 10.1186/s12896-014-0103-y
    Rice straw has shown to be a promising agricultural by-product in the bioconversion of biomass to value-added products. Hydrolysis of cellulose, a main constituent of lignocellulosic biomass, is a requirement for fermentable sugar production and its subsequent bioconversion to biofuels such as biobutanol. The high cost of commercial enzymes is a major impediment to the industrial application of cellulases. Therefore, the use of local microbial enzymes has been suggested. Trichoderma harzianum strains are potential CMCase and β-glucosidase producers. However, few researches have been reported on cellulase production by T. harzianum and the subsequent use of the crude cellulase for cellulose enzymatic hydrolysis. For cellulose hydrolysis to be efficiently performed, the presence of the whole set of cellulase components including exoglucanase, endoglucanase, and β-glucosidase at a considerable concentration is required. Biomass recalcitrance is also a bottleneck in the bioconversion of agricultural residues to value-added products. An effective pretreatment could be of central significance in the bioconversion of biomass to biofuels.
    Matched MeSH terms: Plant Stems/microbiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links