Displaying publications 1 - 20 of 152 in total

Abstract:
Sort:
  1. Azuan NH, Khairunniza-Bejo S, Abdullah AF, Kassim MSM, Ahmad D
    Plant Dis, 2019 Dec;103(12):3218-3225.
    PMID: 31596688 DOI: 10.1094/PDIS-10-18-1721-RE
    Basal stem rot (BSR), caused by the Ganoderma fungus, is an infectious disease that affects oil palm (Elaeis guineensis) plantations. BSR leads to a significant economic loss and reductions in yields of up to Malaysian Ringgit (RM) 1.5 billion (US$400 million) yearly. By 2020, the disease may affect ∼1.7 million tonnes of fresh fruit bunches. The plants appear symptomless in the early stages of infection, although most plants die after they are infected. Thus, early, accurate, and nondestructive disease detection is crucial to control the impact of the disease on yields. Terrestrial laser scanning (TLS) is an active remote-sensing, noncontact, cost-effective, precise, and user-friendly method. Through high-resolution scanning of a tree's dimension and morphology, TLS offers an accurate indicator for health and development. This study proposes an efficient image processing technique using point clouds obtained from TLS ground input data. A total of 40 samples (10 samples for each severity level) of oil palm trees were collected from 9-year-old trees using a ground-based laser scanner. Each tree was scanned four times at a distance of 1.5 m. The recorded laser scans were synched and merged to create a cluster of point clouds. An overhead two-dimensional image of the oil palm tree canopy was used to analyze three canopy architectures in terms of the number of pixels inside the crown (crown pixel), the degree of angle between fronds (frond angle), and the number of fronds (frond number). The results show that the crown pixel, frond angle, and frond number are significantly related and that the BSR severity levels are highly correlated (R2 = 0.76, P < 0.0001; R2 = 0.96, P < 0.0001; and R2 = 0.97, P < 0.0001, respectively). Analysis of variance followed post hoc tests by Student-Newman-Keuls (Newman-Keuls) and Dunnett for frond number presented the best results and showed that all levels were significantly different at a 5% significance level. Therefore, the earliest stage that a Ganoderma infection could be detected was mildly infected (T1). For frond angle, all post hoc tests showed consistent results, and all levels were significantly separated except for T0 and T1. By using the crown pixel parameter, healthy trees (T0) were separated from unhealthy trees (moderate infection [T2] and severe infection [T3]), although there was still some overlap with T1. Thus, Ganoderma infection could be detected as early as the T2 level by using the crown pixel and the frond angle parameters. It is hard to differentiate between T0 and T1, because during mild infection, the symptoms are highly similar. Meanwhile, T2 and T3 were placed in the same group, because they showed the same trend. This study demonstrates that the TLS is useful for detecting low-level infection as early as T1 (mild severity). TLS proved beneficial in managing oil palm plantation disease.
    Matched MeSH terms: Plant Stems/microbiology
  2. Latiffah Zakaria
    MyJurnal
    Basal stem rot disease caused by the basidiomycete fungus, Ganoderma boninense is the most serious disease of oil palm in Malaysia. The disease can be identified by dry rotting of internal parts of the stem with fruiting bodies or basidiomata of the fungus occurring at the oil palm stem base. The stem lesion allows the basal stem rot disease to be distinguished from the other root diseases
    (Turner, 1981).
    Matched MeSH terms: Plant Stems
  3. Liu K, Mansor A, Ruppert N, Fadzly N
    Plant Signal Behav, 2020 10 02;15(10):1795393.
    PMID: 32693670 DOI: 10.1080/15592324.2020.1795393
    Rattan spines are most often regarded as an identification trait and perhaps as a physical protection structure. In this study, we study the spinescence traits from five different species rattan: Daemonorops lewisiana, Daemonorops geniculata, Calamus castaneus, Plectomia griffithii, and Korthalsia scortechinii. We tested length, width, angle, strength, spine density, cross-section surface, spine color, and leaf trichomes (only for D. lewisiana, C. castaneus and D. geniculata). We also tested whether the spines were capable of deterring small climbing mammals (for Plectomia griffithii and Calamus castaneus) by using a choice selection experiment. Due to a variety of spine traits, we could not categorize whether any species is more or less spinescent than the others. We suggest that spines have a much more significant role than merely as a physical defense and work together with other rattan characteristics. This is also evidenced by our choice selection experiment, in which the spines on a single stem donot deter small climbing mammals. However, this is a work in progress, and we have outlined several alternative methods to be used in future work.
    Matched MeSH terms: Plant Stems/anatomy & histology; Plant Stems/physiology
  4. Oladosu Y, Rafii MY, Abdullah N, Magaji U, Hussin G, Ramli A, et al.
    Biomed Res Int, 2016;2016:7985167.
    PMID: 27429981 DOI: 10.1155/2016/7985167
    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw.
    Matched MeSH terms: Plant Stems/microbiology*; Plant Stems/chemistry*
  5. Ahmad R, Shaari K, Lajis NH, Hamzah AS, Ismail NH, Kitajima M
    Phytochemistry, 2005 May;66(10):1141-7.
    PMID: 15924918
    Four new furanoanthraquinones, 2-hydroxymethyl-3,4-[2'-(1-hydroxy-1-methylethyl)-dihydrofurano]-8-hydroxyanthraquinone, 2-hydroxymethyl-3,4-[1'-hydroxy-2'-(1-hydroxy-1-methylethyl)-dihydrofurano]-8-hydroxyanthraquinone, 2-hydroxymethyl-3,4-[2'-1-hydroxy-1-methylethyl)-dihydrofurano]anthraquinone and 2-methyl-3,4-[2'-(1-hydroxy-1-methylethyl)-dihydrofurano] anthraquinone or capitellataquinone A-D and four known anthraquinones, rubiadin, anthragallol 2-methyl ether, alizarin 1-methyl ether and digiferruginol, together with scopoletin were isolated from the stems of Hedyotis capitellata Wall (Rubiaceae). Lucidin-3-O-beta-glucoside was isolated from the roots of the plant. Characterization of the new compounds was carried out by extensive NMR studies using FGCOSY, FGHMQC, FGHMBC and DEPT-135 in addition to other spectroscopic methods.
    Matched MeSH terms: Plant Stems/chemistry
  6. Othman NQ, Sulaiman S, Lee YP, Tan JS
    Data Brief, 2019 Aug;25:104288.
    PMID: 31453289 DOI: 10.1016/j.dib.2019.104288
    To date, Ganoderma boninense is known to be the causal agent of basal stem rot (BSR) disease in oil palm (Elaeis guineensis). This disease causes rotting in the roots, basal and upper stem of oil palm. Infection causes progressive destruction of the basal tissues at the oil palm trunk and internal dry rotting, particularly at the intersection between the bole and trunk. Molecular responses of oil palm during infection are not well study although this information is crucial to strategize effective measures to control or eliminate BSR. Here we report three sets of transcriptome data from samples of near-rot section of basal stem tissue of oil palm tree infected with G. boninense (IPIT), healthy section of basal stem tissue of the same G. boninense infected palm (IPHT) and the healthy section of basal stem tissue of the healthy palm (HPHT). The raw reads were deposited into NCBI database and can be accessed via BioProject accession number PRJNA530030.
    Matched MeSH terms: Plant Stems
  7. Mesjasz-Przybylowicz J, Przybylowicz W, Barnabas A, van der Ent A
    New Phytol, 2016 Mar;209(4):1513-26.
    PMID: 26508435 DOI: 10.1111/nph.13712
    Phyllanthus balgooyi (Phyllanthaceae), one of > 20 nickel (Ni) hyperaccumulator plant species known in Sabah (Malaysia) on the island of Borneo, is remarkable because it contains > 16 wt% Ni in its phloem sap, the second highest concentration of Ni in any living material in the world (after Pycnandra acuminata (Sapotaceae) from New Caledonia with 25 wt% Ni in latex). This study focused on the tissue-level distribution of Ni and other elements in the leaves, petioles and stem of P. balgooyi using nuclear microprobe imaging (micro-PIXE). The results show that in the stems and petioles of P. balgooyi Ni concentrations were very high in the phloem, while in the leaves there was significant enrichment of this element in the major vascular bundles. In the leaves, cobalt (Co) was codistributed with Ni, while the distribution of manganese (Mn) was different. The highest enrichment of calcium (Ca) in the stems was in the periderm, the epidermis and subepidermis of the petiole, and in the palisade mesophyll of the leaf. Preferential accumulation of Ni in the vascular tracts suggests that Ni is present in a metabolically active form. The elemental distribution of P. balgooyi differs from those of many other Ni hyperaccumulator plant species from around the world where Ni is preferentially accumulated in leaf epidermal cells.
    Matched MeSH terms: Plant Stems/anatomy & histology; Plant Stems/cytology; Plant Stems/metabolism
  8. Meor Yusoff, M.S., Muhd Asshar Khalid, Ideris Abu Seman
    MyJurnal
    The paper describes the uses of microfocus XRF to identify infected Basal Stem Rot (BSR) disease in Malaysian palm oil plants. Among symptoms of BSR are wilting of the leaves and plant malnutrition. The study involves determining the inorganic element content of normal and infected leaves. Si, Mo, Cl, K, Ca and Mn had been identified as the major elements. Their distribution was determined by constructing an elemental map of each of this element on the leaves. Line scan was also performed to look into changes on the element composition on a defined region. Quantitative analysis of Cl, Ca and K on the normal and infected leaves show that the infected leaves have lower Cl content and a higher Ca/K ratio than the normal leaves.
    Matched MeSH terms: Plant Stems
  9. Isaac IL, Walter AWCY, Bakar MFA, Idris AS, Bakar FDA, Bharudin I, et al.
    Data Brief, 2018 Apr;17:1108-1111.
    PMID: 29876468 DOI: 10.1016/j.dib.2018.02.027
    Ganoderma boninense is known to be the causal agent for basal stem rot (BSR) affecting the oil palm industry worldwide thus cumulating to high economic losses every year. Several reports have shown that a compatible monokaryon pair needs to mate; producing dikaryotic mycelia to initiate the infection towards the oil palm. However, the molecular events occurs during mating process are not well understood. We performed transcriptome sequencing using Illumina RNA-seq technology and de novo assembly of the transcripts from monokaryon, mating junction and dikaryon mycelia of G. boninense. Raw reads from these three libraries were deposited in the NCBI database with accession number SRR1745787, SRR1745773 and SRR1745777, respectively.
    Matched MeSH terms: Plant Stems
  10. Sahibin A, Wan Mohd. Razi I, Zulfahmi A, Tukimat L, Muhd Barzani G, Jumaat H, et al.
    This study was carried out at an ultrabasic area, Selaru and Felda Rokan Barat, Kuala Pilah, Negeri Sembilan. Eighteen samples of plant and its substrates were collected for determination of heavy metal contents such as Ni, Co, Cr, Mn and Fe in soils and plants. The plants were separated into different portion such as root, stem and leaf and extracted for their heavy metal content by wet digestion method whereas the soils heavy metal available and resistant content were extracted by sequential extraction. Heavy metals content in soil and plant extract was determined using Flame Atomic Absorption Spectrophotometer. The result showed that total content of heavy metals for Ni, Cr, Co, Mn and Fe was at 84.13 - 740.36 mg/kg, 23.51 - 135.53 mg/kg, 188.23 - 848.92 mg/kg, 245.00 - 545.33 mg/kg and 1176.77 - 1243.90 mg/kg, respectively. Bio-available heavy metals content in soil is at 0.09-6.32 mg/kg for Ni, 0-0.51 mg/kg for Co, 0 mg/kg for Cr, 7.78-21.07 mg/kg for Mn and 2.23-4.47 mg/kg for Fe. Based on BAC, Mn and Fe were detected to have a high concentration in plant parts compared to other heavy metals.
    Matched MeSH terms: Plant Stems
  11. Nur Asmadayana Hasim, Mohd Izhar Ariff Mohd Kashim, Mohammad Zaini Yahaya, Muhammad Adib Samsudin, Rozida Khalid, Rizafizah Othaman
    Sains Malaysiana, 2016;45:1879-1885.
    Setiap kejadian semula jadi merupakan rahmat dan memberi kemaslahatan kepada manusia termasuklah pendarahan haid dalam kalangan wanita. Haid merupakan suatu proses yang unik dan terancang yang melibatkan tiga fasa utama iaitu fasa haid, fasa folikel dan fasa luteal. Objektif penyelidikan ini ialah untuk mengkaji dan menghubungkaitkan kebaikan haid daripada perspektif sains dan maqasid syariah. Kajian ini dijalankan dengan menggunakan ulasan literatur secara deskriptif. Kajian mendapati bahawa perubahan hormon, warna darah dan faktor fiziokimia lain memberi kesan terhadap kenormalan kitaran haid. Darah haid juga dikenal pasti mempunyai agen antimikrob terutamanya terhadap bakteria E. coli dan bakteria Gram-negatif lain. Hal ini bertepatan dengan maqasid syariah memelihara jiwa kerana haid mampu juga memelihara kesihatan wanita. Selain itu, kajian lepas menemukan bahawa darah haid terdiri daripada sel stem yang boleh digunakan dalam aktiviti klinikal pada masa akan datang. Maqasid syariah melindungi keturunan juga dapat dilihat dengan kehadiran haid yang sering digunakan bagi menjangkakan waktu subur bagi merancang kehamilan. Hikmah Islam melarang mendekatkan diri (bersetubuh) dengan wanita yang sedang haid adalah satu rahmat yang besar, kerana wanita yang sedang haid biasanya mempunyai kelaziman gejala prahaid (PMS) yang melibatkan isu kesihatan. Oleh itu, haid daripada perspektif sains adalah bertepatan dengan maqasid syariah.
    Matched MeSH terms: Plant Stems
  12. Jani NA, Sirat MH, Ali NM, Aziz A
    Nat Prod Commun, 2013 Apr;8(4):513-4.
    PMID: 23738467
    The chemical compositions of the essential oil of the rhizome, leaf and stem of Hornstedtia leonurus Retz., collected from Negeri Sembilan, Malaysia,are reported for the first time. The essential oils were extracted using hydrodistillation and analyzed by gas chromatography (GC-FID) and gas chromatography/mass spectrometry (GC/MS). Seventeen (96.4%), thirteen (89.2%) and nine components (98.8%) were successfully identified from the rhizome, stem and leaf oils, respectively. Phenylpropanoids were found to be the major fraction, with methyleugenol being the most abundant compound in all oils with percentage compositions of 76.4% (rhizome), 80.3% (stem) and 74.5% (leaf).
    Matched MeSH terms: Plant Stems/chemistry
  13. Ishak MR, Sapuan SM, Leman Z, Rahman MZ, Anwar UM, Siregar JP
    Carbohydr Polym, 2013 Jan 16;91(2):699-710.
    PMID: 23121967 DOI: 10.1016/j.carbpol.2012.07.073
    Sugar palm (Arenga pinnata) is a multipurpose palm species from which a variety of foods and beverages, timber commodities, biofibres, biopolymers and biocomposites can be produced. Recently, it is being used as a source of renewable energy in the form of bio-ethanol via fermentation process of the sugar palm sap. Although numerous products can be produced from sugar palm, three products that are most prominent are palm sugar, fruits and fibres. This paper focuses mainly on the significance of fibres as they are highly durable, resistant to sea water and because they are available naturally in the form of woven fibre they are easy to process. Besides the recent advances in the research of sugar palm fibres and their composites, this paper also addresses the development of new biodegradable polymer derived from sugar palm starch, and presents reviews on fibre surface treatment, product development, and challenges and efforts on properties enhancement of sugar palm fibre composites.
    Matched MeSH terms: Plant Stems/chemistry*
  14. Kausar H, Sariah M, Saud HM, Alam MZ, Ismail MR
    Biodegradation, 2011 Apr;22(2):367-75.
    PMID: 20803236 DOI: 10.1007/s10532-010-9407-3
    Rice straw is produced as a by-product from rice cultivation, which is composed largely of lignocellulosic materials amenable to general biodegradation. Lignocellulolytic actinobacteria can be used as a potential agent for rapid composting of bulky rice straw. Twenty-five actinobacteria isolates were isolated from various in situ and in vitro rice straw compost sources. Isolates A2, A4, A7, A9 and A24 were selected through enzymatic degradation of starch, cellulose and lignin followed by the screening for their adaptability on rice straw powder amended media. The best adapted isolate (A7) was identified as Micromonospora carbonacea. It was able to degrade cellulose, hemicelluloses and carbon significantly (P ≤ 0.05) over the control. C/N ratio was reduced to 18.1 from an initial value of 29.3 in 6 weeks of composting thus having the potential to be used in large scale composting of rice straw.
    Matched MeSH terms: Plant Stems/chemistry*
  15. Lamaming J, Hashim R, Sulaiman O, Leh CP, Sugimoto T, Nordin NA
    Carbohydr Polym, 2015;127:202-8.
    PMID: 25965475 DOI: 10.1016/j.carbpol.2015.03.043
    In this study cellulose nanocrystals were isolated from oil palm trunk (Elaeis guineensis) using acid hydrolysis method. The morphology and size of the nanocrystals were characterized using scanning electron microscopy and transmission electron microscopy. The results showed that the nanocrystals isolated from raw oil palm trunk (OPT) fibers and hot water treated OPT fibers had an average diameter of 7.67 nm and 7.97 nm and length of 397.03 nm and 361.70 nm, respectively. Fourier Transform Infrared spectroscopy indicated that lignin and hemicellulose contents decreased. It seems that lignin was completely removed from the samples during chemical treatment. Thermogravimetric analysis demonstrated that cellulose nanocrystals after acid hydrolysis had higher thermal stability compared to the raw and hot water treated OPT fibers. The X-ray diffraction analysis increased crystallinity of the samples due to chemical treatment. The crystalline nature of the isolated nanocrystals from raw and hot water treated OPT ranged from 68 to 70%.
    Matched MeSH terms: Plant Stems/chemistry
  16. Alam MA, Juraimi AS, Rafii MY, Abdul Hamid A
    Biomed Res Int, 2015;2015:105695.
    PMID: 25802833 DOI: 10.1155/2015/105695
    13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m(-1). Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P < 0.05) reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m(-1) salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m(-1) salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession.
    Matched MeSH terms: Plant Stems/physiology*
  17. Yoshikawa K, Tao S, Arihara S
    J Nat Prod, 2000 Apr;63(4):540-2.
    PMID: 10785436
    The stem of Stephanotis floribunda afforded a new cyclic pentapeptide stephanotic acid (1), possessing a novel 6-(leucin-3'-yl) tryptophan skeleton. The structure of 1 was assigned on the basis of extensive NMR experiments and a chemical reaction and shown to be closely related to the bicyclic octapeptide moroidin (3), a toxin from Laportea moroides.
    Matched MeSH terms: Plant Stems/chemistry
  18. Akhtar MN, Lam KW, Abas F, Maulidiani, Ahmad S, Shah SA, et al.
    Bioorg Med Chem Lett, 2011 Jul 1;21(13):4097-103.
    PMID: 21641207 DOI: 10.1016/j.bmcl.2011.04.065
    Bioassay-guided extraction of the stem bark of Knema laurina showed the acetylcholinesterase (AChE) inhibitory activity of DCM and hexane fractions. Further repeated column chromatography of hexane and DCM fractions resulted in the isolation and purification of five alkenyl phenol and salicylic acid derivatives. New compounds, (+)-2-hydroxy-6-(10'-hydroxypentadec-8'(E)-enyl)benzoic acid (1) and 3-pentadec-10'(Z)-enylphenol (2), along with known 3-heptadec-10'(Z)-enylphenol (3), 2-hydroxy-6-(pentadec-10'(Z)-enyl)benzoic acid (4), and 2-hydroxy-6-(10'(Z)-heptadecenyl)benzoic acid (5) were isolated from the stem bark of this plant. Compounds (1-5) were tested for their acetylcholinesterase inhibitory activity. The structures of these compounds were elucidated by the 1D and 2D NMR spectroscopy, mass spectrometry and chemical derivatizations. Compound 5 showed strong acetylcholinesterase inhibitory activity with IC(50) of 0.573 ± 0.0260 μM. Docking studies of compound 5 indicated that the phenolic compound with an elongated side chain could possibly penetrate deep into the active site of the enzyme and arrange itself through π-π interaction, H-bonding, and hydrophobic contacts with some critical residues along the complex geometry of the active gorge.
    Matched MeSH terms: Plant Stems/chemistry*
  19. Adam FA, Mohd N, Rani H, Baharin B, Mohd Yusof MYP
    J Ethnopharmacol, 2021 Jun 28;274:113882.
    PMID: 33513418 DOI: 10.1016/j.jep.2021.113882
    ETHNOPHARMACOLOGICAL RELEVANCE: Salvadora persica L. chewing stick, commonly known as miswak is still being used as an oral hygiene tool for plaque control and prevention against gingivitis. Various studies have reported on the therapeutics and prophylactic effects particularly on periodontal disease. This review aimed to evaluate the effectiveness of S. persica chewing stick compared to the standard toothbrush for anti-plaque and anti-gingivitis.

    MATERIAL AND METHODS: A PRISMA-compliant systematic search of literature was done from the MEDLINE, CENTRAL, Science Direct, PubMed and Google Scholar. Literature that fulfilled eligibility criteria was identified. Data measuring plaque score and bleeding score were extracted. Qualitative and random-effects meta-analyses were conducted.

    RESULTS: From 1736 titles and abstracts screened, eight articles were utilized for qualitative analysis, while five were selected for meta-analysis. The pooled effect estimates of SMD and 95% CI were -0.07 [-0.60 to 0.45] with an χ2 statistic of 0.32 (p = 0.0001), I2 = 80% as anti-plaque function and 95% CI were -2.07 [-4.05 to -0.10] with an χ2 statistic of 1.67 (p = 0.02), I2 = 82%.

    CONCLUSION: S. persica chewing stick is a tool that could control plaque, comparable to a standard toothbrush. Further, it has a better anti-gingivitis effect and can be used as an alternative.

    Matched MeSH terms: Plant Stems/chemistry
  20. Lamaming J, Hashim R, Leh CP, Sulaiman O
    Carbohydr Polym, 2017 Jan 20;156:409-416.
    PMID: 27842840 DOI: 10.1016/j.carbpol.2016.09.053
    Cellulose nanocrystals were isolated from oil palm trunk by total chlorine free method. The samples were either water pre-hydrolyzed or non-water pre-hydrolyzed, subjected to soda pulping, acidified and ozone bleached. Cellulose and cellulose nanocrystal (CNC) physical, chemical, thermal properties, and crystallinity index were investigated by composition analysis, scanning electron microscopy, transmission electron microscopy, fourier transform infrared, thermogravimetric analysis and X-ray diffraction. Water pre-hydrolysis reduced lignin (<0.5%) and increased holocellulose (99.6%) of ozone-bleached cellulose. Water pre-hydrolyzed cellulose exhibited surface fibrillation and peeling off after acid hydrolysis process compared to non-fibrillated of non-water pre-hydrolyzed cellulose. Water pre-hydrolysis improved final CNC crystallinity (up to 75%) compared to CNC without water pre-hydrolysis crystallinity (69%). Cellulose degradation was found to occur during ozone bleaching stage but CNC showed an increase in crystallinity after acid hydrolysis. Thus, oil palm trunk CNC can be potentially applied in pharmaceutical, food, medical and nanocomposites.
    Matched MeSH terms: Plant Stems/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links