MATERIAL AND METHODS: The composition of Danshen water extract was determined using (High Performance Liquid Chromatography (HPLC). Then Thioflavin T assay was used to determined if Danshen water extract could prevent the aggregation of amyloid-β peptide (Aβ). Alzheimer's disease C.elegans model was used to determine the effect of Danshen water extract. Finally, the reactive oxygen species (ROS) was determined using the 2,7-dichlorofuorescein diacetate method.
RESULTS: In this study, we found that standardized Danshen water extract that contains danshensu (1.26%), salvianolic acid A (0.35%) and salvianolic acid B (2.21%) are able to bind directly to Aβ and prevents it from aggregating. The IC50 for the inhibition of Aβ aggregation by Danshen water extract was 0.5 mg/ml. In the AD model of C.elegans, Danshen water extract managed to alleviates the paralysis phenotype. Furthermore, the administration of Danshen water extract displayed antioxidant properties toward the Aβ-induced oxidative stress.
CONCLUSIONS: AD is a widespread neurodegenerative disease attributed to the accumulation of extracellular plaques comprising Aβ. Danshen water extract could significantly reduce the progress of paralysis in the AD model of C. elegans, showing promising results with its antioxidant properties. It can be concluded that Danshen water extract could potentially serve as a therapeutic for AD.
Methods: A lentiviral transduction system was used to generate SH-SY5Y cells overexpressing APP. Immunoblotting was conducted to determine expression levels of NF-κB, Rho-GTPase, and Bcl-2 family proteins in the APP overexpressed cells.
Results: In the NF-κB signaling pathway, APP-overexpressing SH-SY5Y cells showed that there was a reduction of p-NF-κB (p< 0.05) and IKKα. Subsequently, there was upregulation of protein expression of NF-Κb, IKKβ and IκBα. On the other hand, protein expression of RhoC (p< 0.05) and Rac1/2/3 was upregulated as compared to the control group. Meanwhile, a decrease in RhoA, Cdc42 (p< 0.05) and p-Rac1/cdc42 protein levels was observed in the APP-overexpressed group. Lastly, in the pro-apoptotic pathway, the expression of Bcl-2, Bid, Bok and Puma (p< 0.05) was up regulated in the APP-overexpressed group. Downregulation of Bad and Bim expression was observed in the APP-overexpressed as compared to the control group, and Bax expression remained unchanged in the APP-overexpressed group.
Conclusion: APP overexpression regulated signaling in the NF-κB, Rho-GTPase and Bcl-2 family pathways in neuronal cells, suggesting that these are involved in promoting neuronal survival and modulating synaptic plasticity in AD. However, further studies are essential to elucidate the APP-mediated mechanism of action.