Displaying publications 1 - 20 of 99 in total

Abstract:
Sort:
  1. Lau YJ, Karri RR, Mubarak NM, Lau SY, Chua HB, Khalid M, et al.
    Environ Sci Pollut Res Int, 2020 Nov;27(32):40121-40134.
    PMID: 32656753 DOI: 10.1007/s11356-020-10045-2
    The feasibility and performance of Jicama peroxidase (JP) immobilized Buckypaper/polyvinyl alcohol (BP/PVA) membrane for methylene blue (MB) dye removal was investigated in a customized multi-stage filtration column under batch recycle mode. The effect of independent variables, such as influent flow rate, ratio of H2O2/MB dye concentration, and contact time on the dye removal efficiency, were investigated using response surface methodology (RSM). To capture the inherent characteristics and better predict the removal efficiency, a data-driven adaptive neuro-fuzzy inference system (ANFIS) is implemented. Results indicated that the optimum dye removal efficiency of 99.7% was achieved at a flow rate of 2 mL/min, 75:1 ratio of H2O2/dye concentration with contact time of 183 min. The model predictions of ANFIS are significantly good compared with RSM, thus resulting in R2 values of 0.9912 and 0.9775, respectively. The enzymatic kinetic parameters, Km and Vmax, were evaluated, which are 1.98 mg/L and 0.0219 mg/L/min, respectively. Results showed that JP-immobilized BP/PVA nanocomposite membrane can be promising and cost-effective biotechnology for the practical application in the treatment of industrial dye effluents.
    Matched MeSH terms: Polyvinyl Alcohol*
  2. Nuruddin MF, Khan SU, Shafiq N, Ayub T
    ScientificWorldJournal, 2014;2014:387259.
    PMID: 24707202 DOI: 10.1155/2014/387259
    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.
    Matched MeSH terms: Polyvinyl Alcohol/standards
  3. Wahab AHA, Saad APM, Harun MN, Syahrom A, Ramlee MH, Sulong MA, et al.
    J Mech Behav Biomed Mater, 2019 03;91:406-415.
    PMID: 30684888 DOI: 10.1016/j.jmbbm.2018.12.033
    Intact glenoid labrum is one of passive stabilizer for glenohumeral joint, which have various stiffness at different region. The aim of this study is to develop new artificial glenoid labrum from Polyvinyl Alcohol (PVA) hydrogel, which known as good biomaterial due to its biocompatibility and ability to tailor its modulus. PVA hydrogel was formed using freeze-thaw (FT) method and the stiffness of PVA was controlled by manipulating the concentration of PVA and number of FT cycles. Then, the gradual stiffness was formed using simple diffusion method by introducing the pre-freeze-and-thaw steps. The results showed 20% PVA with three FT cycles suit to highest stiffness of glenoid labrum while 10% PVA with three FT cycles suit to lowest stiffness of glenoid labrum. The functionally graded PVA hydrogel was then developed using the same method by diffusing two mixture (20% PVA and 10% PVA). Mechanical compression test showed, the highest modulus (0.41 MPa) found at the 20% PVA region and lowest modulus (0.1 MPa) found at 10% PVA region. While, at intermediate region, the compressive modulus was in between 20% and 10%, 0.2 MPa. The existence of gradual stiffness was further prove by checking crystallinity of material at each region using Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD). Microstructure of material was obtained from Scanning Electron Microscopy (SEM). This functionally graded PVA hydrogel also able to reduce about 51% of stress at glenoid implant and up to 17% for micromotion at the interfaces. Existence of artificial glenoid labrum could minimize the occurrence of glenoid component loosening.
    Matched MeSH terms: Polyvinyl Alcohol*
  4. Sajjad Z, Gilani MA, Nizami AS, Bilad MR, Khan AL
    J Environ Manage, 2019 Dec 01;251:109618.
    PMID: 31563603 DOI: 10.1016/j.jenvman.2019.109618
    This paper aims to develop novel hydrophilic ionic liquid membranes using pervaporation for the recovery of biobutanol. Multiple polyvinyl alcohol (PVA) membranes based on three commercial ionic liquids with different loading were prepared for various experimental trials. The ionic liquids selected for the study include tributyl (tetradecyl) phosphonium chloride ([TBTDP][Cl]), tetrabutyl phosphonium bromide ([TBP][Br]) and tributyl methyl phosphonium methylsulphate ([TBMP][MS]). The synthesized membranes were characterized and tested in a custom-built pervaporation set-up. All ionic liquid membranes showed better results with total flux of 1.58 kg/m2h, 1.43 kg/m2h, 1.38 kg/m2h at 30% loading of [TBP][Br], [TBMP][MS] and [TBTDP][Cl] respectively. The comparison of ionic liquid membranes revealed that by incorporating [TBMP]MS to PVA matrix resulted in a maximum separation factor of 147 at 30 wt% loading combined with a relatively higher total flux of 1.43 kg/m2h. Density functional theory (DFT) calculations were also carried out to evaluate the experimental observations along with theoretical studies. The improved permeation properties make these phosphonium based ionic liquid a promising additive in PVA matrix for butanol-water separation under varying temperature conditions.
    Matched MeSH terms: Polyvinyl Alcohol
  5. Ho NAD, Leo CP
    Environ Res, 2021 06;197:111100.
    PMID: 33812871 DOI: 10.1016/j.envres.2021.111100
    Carbon capture can be implemented at a large scale only if the CO2 selective materials are abundantly available at low cost. Since the sustainable requirement also elevated, the low-cost and biodegradable cellulosic materials are developed into CO2 selective adsorbent and membranes recently. The applications of cellulose, cellulosic derivatives and nanocellulose as CO2 selective adsorbents and membranes are reviewed here. The fabrication and modification strategies are discussed besides comparing their CO2 separation performance. Cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) isolated from cellulose possess a big surface area for mechanical enhancement and a great number of hydroxyl groups for modification. Nanocellulose aerogels with the large surface area were chemically modified to improve their selectivity towards CO2. Even with the reduction of surface area, amino-functionalized nanocellulose aerogels exhibited the satisfactory chemisorption of CO2 with a capacity of more than 2 mmol/g was recorded. Inorganic fillers such as silica, zeolite and MOFs were further incorporated into nanocellulose aerogels to enhance the physisorption of CO2 by increasing the surface area. Although CO2 adsorbents developed from cellulose and cellulose derivatives were less reported, their applications as the building blocks of CO2 separation membranes had been long studied. Cellulose acetate membranes were commercialized for CO2 separation, but their separation performance could be further improved with silane or inorganic filler. CNCs and CNFs enhanced the CO2 selectivity and permeance through polyvinyl alcohol coating on membranes, but only CNF membranes incorporated with MOFs were explored so far. Although some of these membranes surpassed the upper-bound of Robeson plot, their stability should be further investigated.
    Matched MeSH terms: Polyvinyl Alcohol
  6. Mohamed Saat A, Johan MR
    ScientificWorldJournal, 2014;2014:439839.
    PMID: 25506069 DOI: 10.1155/2014/439839
    Partially phosphorylated polyvinyl alcohol (PPVA) with aluminum phosphate (ALPO4) composites was synthesized by solution casting technique to produce (PPVA)(100-y) - (ALPO4)(y) (y = 0, 1, and 2). The surface structure and thermal properties of the films were characterized using Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). The results showed that the films have higher thermal stability with strong bonding between PPVA and ALPO4.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry*
  7. Sin LT, Bee ST, Tee TT, Kadhum AA, Ma C, Rahmat AR, et al.
    Carbohydr Polym, 2013 Nov 6;98(2):1281-7.
    PMID: 24053804 DOI: 10.1016/j.carbpol.2013.07.069
    In this study, the interactions of α-tocopherol (α-TOH) in PVOH-starch blends were investigated. α-TOH is an interacting agent possesses a unique molecule of polar chroman "head" and non-polar phytyl "tail" which can improve surface interaction of PVOH and starch. It showed favorable results when blending PVOH-starch with α-TOH, where the highest tensile strengths were achieved at 60 wt.% PVOH-starch blend for 1 phr α-TOH and 50 wt.% for 3 phr α-TOH, respectively. This due to the formation of miscible PVOH-starch as resulted by the compatibilizing effect of α-TOH. Moreover, the enthalpy of melting (ΔHm) of 60 wt.% PVOH-starch and 50 wt.% PVOH-starch added with 1 and 3 phr α-TOH respectively were higher than ΔHm of the neat PVOH-starch blends. The thermogravimetry analysis also showed that α-TOH can be used as thermal stabilizer to reduce weight losses at elevated temperature. The surface morphologies of the compatible blends formed large portion of continuous phase where the starch granules interacted well with α-TOH by acting as compatilizer to reduce surface energy of starch for embedment into PVOH matrix.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry*
  8. Saion E, Gharibshahi E, Naghavi K
    Int J Mol Sci, 2013;14(4):7880-96.
    PMID: 23579953 DOI: 10.3390/ijms14047880
    Size-controlled and monodispersed silver nanoparticles were synthesized from an aqueous solution containing silver nitrate as a metal precursor, polyvinyl alcohol as a capping agent, isopropyl alcohol as hydrogen and hydroxyl radical scavengers, and deionized water as a solvent with a simple radiolytic method. The average particle size decreased with an increase in dose due to the domination of nucleation over ion association in the formation of the nanoparticles by gamma reduction. The silver nanoparticles exhibit a very sharp and strong absorption spectrum with the absorption maximum λmax blue shifting with an increased dose, owing to a decrease in particle size. The absorption spectra of silver nanoparticles of various particle sizes were also calculated using a quantum physics treatment and an agreement was obtained with the experimental absorption data. The results suggest that the absorption spectrum of silver nanoparticles possibly derived from the intra-band excitations of conduction electrons from the lowest energy state (n = 5, l = 0) to higher energy states (n ≥ 6; Δl = 0, ±1; Δs = 0, ±1), allowed by the quantum numbers principle. This demonstrates that the absorption phenomenon of metal nanoparticles based on a quantum physics description could be exploited to be added into the fundamentals of metal nanoparticles and the related fields of nanoscience and nanotechnology.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry
  9. Kadir MF, Aspanut Z, Majid SR, Arof AK
    PMID: 21237698 DOI: 10.1016/j.saa.2010.12.051
    Fourier transform infrared (FTIR) spectroscopy studies of poly(vinyl alcohol) (PVA), and chitosan polymer blend doped with ammonium nitrate (NH(4)NO(3)) salt and plasticized with ethylene carbonate (EC) have been performed with emphasis on the shift of the carboxamide, amine and hydroxyl bands. 1% acetic acid solution was used as the solvent. It is observed from the chitosan film spectrum that evidence of polymer-solvent interaction can be observed from the shifting of the carboxamide band at 1660 cm(-1) and the amine band at 1591 cm(-1) to 1650 and 1557 cm(-1) respectively and the shift of the hydroxyl band from 3377 to 3354 cm(-1). The hydroxyl band in the spectrum of PVA powder is observed at 3354 cm(-1) and is observed at 3343 cm(-1) in the spectrum of the PVA film. On addition of NH(4)NO(3) up to 30 wt.%, the carboxamide, amine and hydroxyl bands shifted from 1650, 1557 and 3354 cm(-1) to 1642, 1541 and 3348 cm(-1) indicating that the chitosan has complexed with the salt. In the PVA-NH(4)NO(3) spectrum, the hydroxyl band has shifted from 3343 to 3272 cm(-1) on addition of salt from 10 to 30 wt.%. EC acts as a plasticizing agent since there is no shift in the bands as observed in the spectrum of PVA-chitosan-EC films. The mechanism of ion migration is proposed for the plasticized and unplasticized PVA-chitosan-NH(4)NO(3) systems. In the spectrum of PVA-chitosan-NH(4)NO(3)-EC complex, the doublet CO stretching in EC is observed in the vicinity 1800 and 1700. This indicates that there is some interaction between the salt and EC.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry*
  10. Wan Ngah WS, Kamari A, Koay YJ
    Int J Biol Macromol, 2004 Jun;34(3):155-61.
    PMID: 15225987
    The adsorption of Cu(II) ions from aqueous solution by chitosan and chitosan/PVA beads was studied in a batch adsorption system. Chitosan solution was blended with poly(vinyl alcohol) (PVA) in order to obtain sorbents that are insoluble in aqueous acidic and basic solution. The adsorption capacities and rates of Cu(II) ions onto chitosan and chitosan/PVA beads were evaluated. The Langmuir, Freundlich and BET adsorption models were applied to describe the isotherms and isotherm constants. Adsorption isothermal data could be well interpreted by the Langmuir model. The kinetic experimental data properly correlated with the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step. The Cu(II) ions can be removed from the chitosan and chitosan/PVA beads rapidly by treatment with an aqueous EDTA solution. Results also showed that chitosan and chitosan/PVA beads are favourable adsorbers.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry*
  11. Majidnia Z, Fulazzaky MA
    J Environ Manage, 2017 Apr 15;191:219-227.
    PMID: 28107756 DOI: 10.1016/j.jenvman.2017.01.019
    The presence of Cs(I) ions in nuclear wastewater becomes an important issue for the reason of its high toxicity. The development of adsorbent embedded metal-based catalysts that has sufficient adsorption capacity is expected for the removal of Cs(I) ions from contaminated water. This study tested the use of maghemite, titania and combined maghemite-titania polyvinyl alcohol (PVA)-alginate beads as an adsorbent to remove Cs(I) ions from aqueous solution with the variables of pH and initial concentration using batch experiments under sunlight. The results showed that the use of combined maghemite-titania PVA-alginate beads can have an efficiency of 93.1% better than the use of either maghemite PVA-alginate beads with an efficiency of 91.8% or titania PVA-alginate beads with an efficiency of 90.1%. The experimental data for adsorption of Cs(I) ions from aqueous solution with the initial concentrations of 50, 100 and 200 mg L(-1) on the surface of combined maghemite-titania PVA-alginate beads were well fit by the pseudo-second-order and Langmuir models. The optimal adsorption of Cs(I) ions from aqueous solution by combined maghemite-titania PVA-alginate beads under sunlight occurs at pH 8 with an initial Cs(I) ion concentration of 50 mg L(-1). The combined maghemite-titania PVA-alginate beads can be recycled at least five times with a slight loss of their original properties.
    Matched MeSH terms: Polyvinyl Alcohol*
  12. Hapipi NM, Mazlan SA, Ubaidillah U, Abdul Aziz SA, Ahmad Khairi MH, Nordin NA, et al.
    Int J Mol Sci, 2020 Mar 05;21(5).
    PMID: 32151055 DOI: 10.3390/ijms21051793
    Chemically crosslinked hydrogel magnetorheological (MR) plastomer (MRP) embedded with carbonyl iron particles (CIPs) exhibits excellent magnetic performance (MR effect) in the presence of external stimuli especially magnetic field. However, oxidation and desiccation in hydrogel MRP due to a large amount of water content as a dispersing phase would limit its usage for long-term applications, especially in industrial engineering. In this study, different solvents such as dimethyl sulfoxide (DMSO) are also used to prepare polyvinyl alcohol (PVA) hydrogel MRP. Thus, to understand the dynamic viscoelastic properties of hydrogel MRP, three different samples with different solvents: water, DMSO, and their binary mixtures (DMSO/water) were prepared and systematically carried out using the oscillatory shear. The outcomes demonstrate that the PVA hydrogel MRP prepared from precursor gel with water shows the highest MR effect of 15,544% among the PVA hydrogel MRPs. However, the samples exhibit less stability and tend to oxidise after a month. Meanwhile, the samples with binary mixtures (DMSO/water) show an acceptable MR effect of 11,024% with good stability and no CIPs oxidation. Otherwise, the sample with DMSO has the lowest MR effect of 7049% and less stable compared to the binary solvent samples. This confirms that the utilisation of DMSO as a new solvent affects the rheological properties and stability of the samples.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry*
  13. Habiba U, Siddique TA, Talebian S, Lee JJL, Salleh A, Ang BC, et al.
    Carbohydr Polym, 2017 Dec 01;177:32-39.
    PMID: 28962774 DOI: 10.1016/j.carbpol.2017.08.115
    In this study, effect of degree of deacetylation on property and adsorption capacity of chitosan/polyvinyl Alcohol electrospun membrane has been investigated. Resulting nanofibers were characterized by FESEM, FTIR, XRD, TGA, tensile testing, weight loss test and adsorption test. FESEM result shows, finer nanofiber was fabricated from 42h hydrolyzed chitosan and PVA blend solution. FTIR and XRD result showed a strong interaction between chitosan and polyvinyl alcohol. Higher tensile strength was observed for the nanofiber having 42h hydrolyzed chitosan. Blend solution of chitosan/PVA having low DD chitosan had higher viscosity. The nanofibrous membrane was stable in distilled water, acidic and basic medium. The isotherm study shows that the adsorption capacity (qm) of nanofiber containing higher DD chitosan was higher for Cr(VI). In contrary, the membrane containing chitosan with lower DD showed the higher adsorption capacity for Fe(III) and methyl orange. Moreover, the effect of DD on removal percentage of adsorbate was dependent on the initial concentration of the adsorbate.
    Matched MeSH terms: Polyvinyl Alcohol/chemistry*
  14. Kadri NA, Raha MG, Pingguan-Murphy B
    Clinics (Sao Paulo), 2011;66(8):1489-94.
    PMID: 21915506
    Matched MeSH terms: Polyvinyl Alcohol*
  15. Mohd Hamzah Harun, Elias Saion, Noorhana Yahya, Anuar Kassim, Hussain, Muhammad Yousuf, Iskandar Shahrim Mustafa, et al.
    MyJurnal
    The composite polymer films of polyvinyl alcohol/polypyrrole/chloral hydrate (PVA-PPy-CH) had been prepared. Effects of γ-rays on the electrical conductivity of the composite polymer films had been investigated by using Inductance Capacitance Resistance meter (LCR) meter at a frequency ranging from 20 Hz to 1 MHz. With the incorporation of chloral hydrate in the polymer sample, the conductivity increased indicates that it is capable to be used as dopant for polymerizing conjugated polymer. The electrical conductivity obtained increased as the dose increased, which is in the order of 10-5 Scm-1 indicates that γ-rays is capable to enhance the electrical conductivity of the composite polymer films. The parameter of s is in the range of 0.31 d s d 0.49 and obeyed simple power law dispersion ωs. The Scanning Electron Microscopy (SEM) micrographs reveal the formation of polypyrrole globules in polyvinyl alcohol matrix which increased as the irradiation dose was increased.
    Matched MeSH terms: Polyvinyl Alcohol
  16. Mohd Hamzah Harun, Elias Saion, Noorhana Yahya, Anuar Kassim, Ekramul Mahmud, Muhammad Yousuf Hussain, et al.
    MyJurnal
    The composite polymer films of polyvinyl alcohol/polypyrrole/chloral hydrate (PVA-PPy-CH) had been prepared. Effects of J-rays on the electrical conductivity of the composite polymer films had
    been investigated by using Inductance Capacitance Resistance meter (LCR) meter at a frequency
    ranging from 20 Hz to 1 MHz. With the incorporation of chloral hydrate in the polymer sample, the conductivity increased indicates that it is capable to be used as dopant for polymerizing conjugated polymer. The electrical conductivity obtained increased as the dose increased, which is in the order of 10-5Scm-1 indicates that J-rays is capable to enhance the electrical conductivity of the composite polymer films. The parameter of s is in the range of 0.31 d s d 0.49 and obeyed simple power law dispersion Zs. The Scanning Electron Microscopy (SEM) micrographs reveal the formation of polypyrrole globules in polyvinyl alcohol matrix which increased as the irradiation dose was increased.
    Matched MeSH terms: Polyvinyl Alcohol
  17. Rusnah M, Andanastuti M, Idris B
    Med J Malaysia, 2004 May;59 Suppl B:83-4.
    PMID: 15468830
    The paper discusses the influence of sintering temperature on the microstructure and strength of hydroxyapatite ceramics prepared using the extrusion process. The average pore diameters observed were in the range of approximately 150mm to 300mm whereas the compaction strength was found to be around 120-160 MPa.
    Matched MeSH terms: Polyvinyl Alcohol/analysis; Polyvinyl Alcohol/chemical synthesis
  18. Sung TC, Li HF, Higuchi A, Ling QD, Yang JS, Tseng YC, et al.
    J Vis Exp, 2018 02 03.
    PMID: 29443075 DOI: 10.3791/57314
    The effect of physical cues, such as the stiffness of biomaterials on the proliferation and differentiation of stem cells, has been investigated by several researchers. However, most of these investigators have used polyacrylamide hydrogels for stem cell culture in their studies. Therefore, their results are controversial because those results might originate from the specific characteristics of the polyacrylamide and not from the physical cue (stiffness) of the biomaterials. Here, we describe a protocol for preparing hydrogels, which are not based on polyacrylamide, where various stem, cells including human embryonic stem (ES) cells and human induced pluripotent stem (iPS) cells, can be cultured. Hydrogels with varying stiffness were prepared from bioinert polyvinyl alcohol-co-itaconic acid (P-IA), with stiffness controlled by crosslinking degree by changing crosslinking time. The P-IA hydrogels grafted with and without oligopeptides derived from extracellular matrix were investigated as a future platform for stem cell culture and differentiation. The culture and passage of amniotic fluid stem cells, adipose-derived stem cells, human ES cells, and human iPS cells is described in detail here. The oligopeptide P-IA hydrogels showed superior performances, which were induced by their stiffness properties. This protocol reports the synthesis of the biomaterial, their surface manipulation, along with controlling the stiffness properties and finally, their impact on stem cell fate using xeno-free culture conditions. Based on recent studies, such modified substrates can act as future platforms to support and direct the fate of various stem cells line to different linkages; and further, regenerate and restore the functions of the lost organ or tissue.
    Matched MeSH terms: Polyvinyl Alcohol/pharmacology; Polyvinyl Alcohol/therapeutic use*
  19. Suhaida MG, Yahya IB, Darmawati MY
    Med J Malaysia, 2004 May;59 Suppl B:63-4.
    PMID: 15468820
    The aim of this study was to investigate the effect of the surfactant properties of polyvinyl alcohol (PVA) in enhancing the yield of small size microspheres. Naltrexone microspheres were prepared by solvent-solvent extraction evaporation process. PVA of various concentrations were added into the aqueous phase prior to the mixing process. The addition of PVA was expected to influence the shape, size distribution, drug loading and drug release profile. The results indicated that it is desirable to increase the weight fraction of the microspheres with size range below 106 mm for the highest possible yield.
    Matched MeSH terms: Polyvinyl Alcohol/analysis; Polyvinyl Alcohol/chemical synthesis*
  20. Ngadiman NH, Yusof NM, Idris A, Misran E, Kurniawan D
    Mater Sci Eng C Mater Biol Appl, 2017 Jan 01;70(Pt 1):520-534.
    PMID: 27770924 DOI: 10.1016/j.msec.2016.09.002
    The use of electrospinning process in fabricating tissue engineering scaffolds has received great attention in recent years due to its simplicity. The nanofibers produced via electrospinning possessed morphological characteristics similar to extracellular matrix of most tissue components. Porosity plays a vital role in developing tissue engineering scaffolds because it influences the biocompatibility performance of the scaffolds. In this study, maghemite (γ-Fe2O3) was mixed with polyvinyl alcohol (PVA) and subsequently electrospun to produce nanofibers. Five factors; nanoparticles content, voltage, flow rate, spinning distance, and rotating speed were varied to produce the electrospun nanofibrous mats with high porosity value. Empirical model was developed using response surface methodology to analyze the effect of these factors to the porosity. The results revealed that the optimum porosity (90.85%) was obtained using 5% w/v nanoparticle content, 35kV of voltage, 1.1ml/h volume flow rate of solution, 8cm spinning distance and 2455rpm of rotating speed. The empirical model was verified successfully by performing confirmation experiments. The properties of optimum PVA/γ-Fe2O3 nanofiber mats such as fiber diameter, mechanical properties, and contact angle were investigated. In addition, cytocompatibility test, in vitro degradation rate, and MTT assay were also performed. Results revealed that high porosity biodegradable γ-Fe2O3/polyvinyl alcohol nanofiber mats have low mechanical properties but good degradation rates and cytocompatibility properties. Thus, they are suitable for low load bearing biomedical application or soft tissue engineering scaffold.
    Matched MeSH terms: Polyvinyl Alcohol/chemical synthesis*; Polyvinyl Alcohol/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links