Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Eman S. Algariri, Rabiatul Basria S.M.N. Mydin, Emmanuel Jairaj Moses, Simon Imakwu Okekpa, Nur Arzuar Abdul Rahim, Narazah Mohd Yusoff
    MyJurnal
    Introduction: Rac1 and STIM1 genes are emerging therapeutic targets for cancers. However, their roles in acute my- eloid leukaemia (AML) are not well understood. The goal of this study was to evaluate the effects of dose and time on Rac1 and STIM1 knockdown in the AML cell line model (THP-1 cells). Methods: THP-1 cells were transfected with siRac1 at doses of 50, 100, and 200 nM or dsiSTIM1 at doses of 2, 5, and 10 nM. Expression level of Rac1 and STIM1 then were assessed at time points between 12 and 72 h post-transfection using real-time reverse transcription poly- merase chain reaction. Results: Compared to the control, 87% Rac1 knockdown was attained with 50 nM siRac1 at 24 h post-transfection, and 70% STIM1 knockdown was achieved with 10 nM dsiSTIM1 at 48 h post-transfection. Conclusion: These results show that effective knockdown of Rac1 and STIM1 is possible, and therapy that includes Rac1 and STIM1 inhibitors eventually could provide a new and highly effective strategy for AML treatment.
    Matched MeSH terms: Reverse Transcription
  2. Tan KK, Azizan NS, Yaacob CN, Che Mat Seri NAA, Samsudin NI, Teoh BT, et al.
    BMC Infect Dis, 2018 04 11;18(1):169.
    PMID: 29642856 DOI: 10.1186/s12879-018-3065-1
    BACKGROUND: A method for rapid detection of dengue virus using the reverse-transcription recombinase polymerase amplification (RT-RPA) was recently developed, evaluated and made ready for deployment. However, reliance solely on the evaluation performed by experienced researchers in a well-structured and well-equipped reference laboratory may overlook the potential intrinsic problems that may arise during deployment of the assay into new application sites, especially for users unfamiliar with the test. Appropriate assessment of this newly developed assay by users who are unfamiliar with the assay is, therefore, vital.

    METHODS: An operational utility test to elucidate the efficiency and effectiveness of the dengue RT-RPA assay was conducted among a group of researchers new to the assay. Nineteen volunteer researchers with different research experience were recruited. The participants performed the RT-RPA assay and interpreted the test results according to the protocol provided. Deviation from the protocol was identified and tabulated by trained facilitators. Post-test questionnaires were conducted to determine the user satisfaction and acceptability of the dengue RT-RPA assay.

    RESULTS: All the participants completed the test and successfully interpreted the results according to the provided instructions, regardless of their research experience. Of the 19 participants, three (15.8%) performed the assay with no deviations and 16 (84.2%) performed the assay with only 1 to 5 deviations. The number of deviations from protocol, however, was not correlated with the user laboratory experience. The accuracy of the results was also not affected by user laboratory experience. The concordance of the assay results against that of the expected was at 89.3%. The user satisfaction towards the RT-RPA protocol and interpretation of results was 90% and 100%, respectively.

    CONCLUSIONS: The dengue RT-RPA assay can be successfully performed by simply following the provided written instructions. Deviations from the written protocols did not adversely affect the outcome of the assay. These suggest that the RT-RPA assay is indeed a simple, robust and efficient laboratory method for detection of dengue virus. Furthermore, high new user acceptance of the RT-RPA assay suggests that this assay could be successfully deployed into new laboratories where RT-RPA was not previously performed.

    Matched MeSH terms: Reverse Transcription
  3. Lai MY, Bukhari FDM, Zulkefli NZ, Ismail I, Mustapa NI, Soh TST, et al.
    BMC Infect Dis, 2021 Nov 17;21(1):1162.
    PMID: 34789179 DOI: 10.1186/s12879-021-06876-0
    BACKGROUND: Current assays for detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rely on time consuming, costly and laboratory based methods for virus isolation, purification and removing inhibitors. To address this limitation, we propose a simple method for testing RNA from nasopharyngeal swab samples that bypasses the RNA purification step.

    METHODS: In the current project, we have described two extraction-free reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays for the detection of SARS-CoV-2 by using E gene and RdRp gene as the targets.

    RESULTS: Here, results showed that reverse transcription loop-mediated isothermal amplification assays with 88.4% sensitive (95% CI: 74.9-96.1%) and 67.4% sensitive (95% CI: 51.5-80.9%) for E gene and RdRp gene, respectively.

    CONCLUSION: Without the need of RNA purification, our developed RT-LAMP assays for direct detection of SARS-CoV-2 from nasopharyngeal swab samples could be turned into alternatives to qRT-PCR for rapid screening.

    Matched MeSH terms: Reverse Transcription
  4. Lau YL, Ismail IB, Mustapa NIB, Lai MY, Tuan Soh TS, Haji Hassan A, et al.
    PLoS One, 2021;16(1):e0245164.
    PMID: 33406112 DOI: 10.1371/journal.pone.0245164
    Rapid diagnosis is an important intervention in managing the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak. Real time reverse transcription polymerase chain reaction (RT-qPCR) remains the primary means for diagnosing the new virus strain but it is time consuming and costly. Recombinase polymerase amplification (RPA) is an isothermal amplification assay that does not require a PCR machine. It is an affordable, rapid, and simple assay. In this study, we developed and optimized a sensitive reverse transcription (RT)-RPA assay for the rapid detection of SARS-CoV-2 using SYBR Green I and/or lateral flow (LF) strip. The analytical sensitivity and specificity of the RT-RPA assay were tested by using 10-fold serial diluted synthetic RNA and genomic RNA of similar viruses, respectively. Clinical sensitivity and specificity of the RT-RPA assay were carried out using 78 positive and 35 negative nasopharyngeal samples. The detection limit of both RPA and RT-qPCR assays was 7.659 and 5 copies/μL RNA, respectively with no cross reactivity with other viruses. The clinical sensitivity and specificity of RT-RPA were 98% and 100%, respectively. Our study showed that RT-RPA represents a viable alternative to RT-qPCR for the detection of SARS-CoV-2, especially in areas with limited infrastructure.
    Matched MeSH terms: Reverse Transcription/genetics
  5. Thanarajoo SS, Kong LL, Kadir J, Lau WH, Vadamalai G
    J Virol Methods, 2014 Jun;202:19-23.
    PMID: 24631346 DOI: 10.1016/j.jviromet.2014.02.024
    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) detected Coconut cadang-cadang viroid (CCCVd) within 60 min at 60 °C in total nucleic acid extracted from oil palm leaves infected with CCCVd. Positive reactions showed colour change from orange to green in the reaction mix after the addition of fluorescent reagent, and a laddering pattern band on 2% agarose gel electrophoresis. Conventional RT-PCR with LAMP primers produced amplicons with a sequence identical to the 297-nt CCCVd oil palm variant with the primers being specific for CCCVd and not for other viroids such as PSTVd and CEVd. RT-LAMP was found to be rapid and specific for detecting oil palm CCCVd.
    Matched MeSH terms: Reverse Transcription*
  6. Noor Syamila Othman, Wan Ishlah Leman, Kahairi Abdullah, Siti Aesah @ Naznin Muhammad, Mohd Arifin Kaderi
    MyJurnal
    The aim of this study was to investigate the level of miR-744 expression in nasopharyngeal carcinoma (NPC) tumour tissue and to provide initial clue on its potential as biomarkers for early detection of NPC in a preliminary analysis. Total miRNAs was extracted from NPC tissue as well as normal nasopharynx tissue taken from Hospital Tengku Ampuan Afzan (HTAA), Kuantan and converted into cDNA. The level of miR-744 expression in the cDNA was quantified using quantitative reverse transcription polymserase chain reaction (RT-qPCR) technique. The expression level of SNORD48 was measured simultaneously for each sample, which served as endogenous control. The difference in the expression of miR-744 in NPC and normal nasopharynx tissue were analysed using relative quantification, 2-ΔΔCT. In this preliminary analysis, this study found that miR-744 was upregulated in NPC as compared to normal nasopharynx tissue by 2.5 fold changes, respectively suggesting it may involve in progression of tumour. However, the finding is not significant and may not accurately reflect the overall population, due to small sample size involved in the study. Findings from the current study suggest the potential of miR-744 to serve as useful diagnostic and prognostic biomarker in NPC.
    Matched MeSH terms: Reverse Transcription
  7. Lo SG, Wong SF, Mak JW, Choo KK, Ng KP
    Med Mycol, 2020 Apr 01;58(3):333-340.
    PMID: 31309220 DOI: 10.1093/mmy/myz061
    Cladosporium is one of the most abundant spore. Fungi of this genus can cause respiratory allergy and intrabronchial lesion. We studied the differential expression of host genes after the interaction of Cladosporium sphaerospermum conidia with Human Bronchial Epithelial Cells (BEAS-2B) and Human Pulmonary Alveolar Epithelial Cells (HPAEpiC). C. sphaerospermum conidia were harvested and co-cultured with BEAS-2B cells or HPAEpiC cells for 48 hours respectively. This culture duration was chosen as it was associated with high germination rate. RNA was extracted from two biological replicates per treatment. RNA of BEAS-2B cells was used to assess changes in gene expression using AffymetrixGeneChip® Human Transcriptome Array 2.0. After co-culture with Cladosporium spores, 68 individual genes were found differentially expressed (P ≤ 0.05) and up-regulated ≥ 1.5 folds while 75 genes were found differentially expressed at ≤ -1.5 folds compared with controls. Reverse transcription and qPCR were performed on the RNA collected from both BEAS-2B cells and HPAEpiC cells to validate the microarray results with 7 genes. Based on the findings, infected pulmonary epithelial cells exhibited an increase in cell death-related genes and genes associated with innate immunity.
    Matched MeSH terms: Reverse Transcription
  8. Lim EL, Siow RS, Abdul Rahim R, Ho CL
    Mar Biotechnol (NY), 2016 Apr;18(2):189-200.
    PMID: 26631182 DOI: 10.1007/s10126-015-9680-6
    Many bacterial epiphytes of agar-producing seaweeds secrete agarase that degrade algal cell wall matrix into oligoagars which elicit defense-related responses in the hosts. The molecular defense responses of red seaweeds are largely unknown. In this study, we surveyed the defense-related transcripts of an agarophyte, Gracilaria changii, treated with β-agarase through next generation sequencing (NGS). We also compared the defense responses of seaweed elicited by agarase with those elicited by an agarolytic bacterium isolated from seaweed, by profiling the expression of defense-related genes using quantitative reverse transcription real-time PCR (qRT-PCR). NGS detected a total of 391 differentially expressed genes (DEGs) with a higher abundance (>2-fold change with a p value <0.001) in the agarase-treated transcriptome compared to that of the non-treated G. changii. Among these DEGs were genes related to signaling, bromoperoxidation, heme peroxidation, production of aromatic amino acids, chorismate, and jasmonic acid. On the other hand, the genes encoding a superoxide-generating NADPH oxidase and related to photosynthesis were downregulated. The expression of these DEGs was further corroborated by qRT-PCR results which showed more than 90 % accuracy. A comprehensive analysis of their gene expression profiles between 1 and 24 h post treatments (hpt) revealed that most of the genes analyzed were consistently upregulated or downregulated by both agarase and agarolytic bacterial treatments, indicating that the defense responses induced by both treatments are highly similar except for genes encoding vanadium bromoperoxidase and animal heme peroxidase. Our study has provided the first glimpse of the molecular defense responses of G. changii to agarase and agarolytic bacterial treatments.
    Matched MeSH terms: Reverse Transcription
  9. Wan Norhana, M. N., Masazurah A. R.
    MyJurnal
    Hepatitis A is a liver infection caused by the hepatitis A virus (HAV). Outbreaks of hepatitis A have been linked to the consumption of both raw and cooked shellfish. These outbreaks could induce a public confidence problem over shellfish safety and may result in important economic losses for the seafood industry. The work presented in this study investigated the presence of HAV in shellfish from Peninsular Malaysia. A total of 365 of cultured and wild shellfish from 36 sampling locations located throughout Peninsular Malaysia were examined using a commercial nucleic acid extraction and reverse transcription -polymerase chain reaction (RT-PCR) kit. HAV was not detected in almost all of the shellfish samples xamined. Only one cockle sample from Changkat, Seberang Perai was positive for HAV. The results suggest the absence of HAV or very low amount of HAV viral particles in most of the shellfish examined.
    Matched MeSH terms: Reverse Transcription
  10. Liew JWK, Fong MY, Lau YL
    PeerJ, 2017;5:e3577.
    PMID: 28761783 DOI: 10.7717/peerj.3577
    Quantitative reverse transcription PCR (qRT-PCR) has been an integral part of characterizing the immunity of Anopheles mosquitoes towards Plasmodium invasion. Two anti-Plasmodium factors of Anopheles, thioester-containing protein 1 (TEP1) and nitric oxide synthase (NOS), play a role in the refractoriness of Anopheles towards Plasmodium infection and are generally expressed during infection. However, these are less studied in Anopheles dirus, a dominant malaria vector in Southeast Asia. Furthermore, most studies used a single reference gene for normalization during gene expression analysis without proper validation. This may lead to erroneous quantification of expression levels. Therefore, the present study characterized and investigated the expression profiles of TEP1 and NOS of Anopheles dirus during P. berghei infection. Prior to that, the elongation factor 1-alpha (EF1), actin 1 (Act) and ribosomal protein S7 (S7) genes were validated for their suitability as a set of reference genes. TEP1 and NOS expressions in An. dirus were found to be significantly induced after P. berghei infection.
    Matched MeSH terms: Reverse Transcription
  11. Mazlan LF, Bachek NF, Mahamud SNA, Idris LH, Wei TS, Omar AR, et al.
    Vet World, 2017 May;10(5):542-548.
    PMID: 28620260 DOI: 10.14202/vetworld.2017.542-548
    AIM: Genotype VII Newcastle disease virus (NDV) is the most predominant NDV strains that circulating in Malaysia; thus, this study was aimed to determine the susceptibility of Japanese quails toward genotype VII NDV. Clinical signs, gross pathological lesions of organs, positive detection of virus in organs and cloacal swabs, as well as the expression of the antibody titer, were used as parameters to assess the susceptibility of Japanese quails following infection of genotype VII NDV.

    MATERIALS AND METHODS: About 20 quails were divided into three groups (n=8 for Groups A and B; n=4 for the control group). The quails in the Groups A and B were infected via intraocular route with 0.03 ml of 103.5 ELD50 and 107.0 ELD50 of NDV strain IBS 002, respectively, while the control group received 1× phosphate-buffered saline. Cloacal swabs and necropsy were taken on day 7 post-infection for all quails were subjected to one-step reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) for detection of virus and examination for gross pathological lesion, respectively. Blood serums of infected quails were taken on day 10, 14, and 21 post-day infections and were subjected for hemagglutination inhibition (HI) assay.

    RESULTS: Depression and ruffled feathers, trachea rales, leg paralysis, and torticollis were shown in some of the quails in both infected groups. Based on statistical analysis, there was no significant difference (p>0.05) in clinical signs between the infected groups. The results for RT-qPCR were found to be negative for all groups, and no gross pathological lesions of organs observed for quails in both infected groups. Trachea, proventriculus, and cecal tonsil were taken for the detection of NDV by RT-qPCR, and some of the organ samples showed positive detection of virus in both infected groups. HI assay showed an increase in mean titers of antibody across time and between infected groups.

    CONCLUSION: In summary, Japanese quails are susceptible to genotype VII NDV based on parameters assessed.

    Matched MeSH terms: Reverse Transcription
  12. Mat Jusoh TNA, Shueb RH
    J Trop Med, 2017;2017:4687182.
    PMID: 29379526 DOI: 10.1155/2017/4687182
    The shattering rise in dengue virus infections globally has created a need for an accurate and validated rapid diagnostic test for this virus. Rapid diagnostic test (RDT) and reverse transcription-polymerase chain reaction (RT-PCR) diagnostic detection are useful tools for diagnosis of early dengue infection. We prospectively evaluated the diagnostic performance of nonstructural 1 (NS1) RDT and real-time RT-PCR diagnostic kits in 86 patient serum samples. Thirty-six samples were positive for dengue NS1 antigen while the remaining 50 were negative when tested with enzyme-linked immunosorbent assay (ELISA). Commercially available RDTs for NS1 detection, RTK ProDetect™, and SD Bioline showed high sensitivity of 94% and 89%, respectively, compared with ELISA. GenoAmp® Trioplex Real-Time RT-PCR and RealStar® Dengue RT-PCR tests presented a comparable kappa agreement with 0.722. The result obtained from GenoAmp® Real-Time RT-PCR Dengue test showed that 14 samples harbored dengue virus type 1 (DENV-1), 8 samples harbored DENV-2, 2 samples harbored DENV-3, and 1 sample harbored DENV-4. 1 sample had a double infection with DENV-1 and DENV-2. The NS1 RDTs and real-time RT-PCR tests were found to be a useful diagnostic for early and rapid diagnosis of acute dengue and an excellent surveillance tool in our battle against dengue.
    Matched MeSH terms: Reverse Transcription
  13. Chin KL, Teoh BT, Sam SS, Loong SK, Tan KK, Azizan NS, et al.
    Trop Biomed, 2022 Dec 01;39(4):518-523.
    PMID: 36602210 DOI: 10.47665/tb.39.4.005
    Zika virus (ZIKV) infection has emerged as a global health concern following epidemic outbreaks of severe neurological disorders reported in Pacific and Americas since 2016. Therefore, a rapid, sensitive and specific diagnostic test for ZIKV infection is critical for the appropriate patient management and the control of disease spread. A TaqMan minor groove binding (MGB) probe-based quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was developed based on the conserved sequence regions of 463 ZIKV NS2B genes. The designed ZIKV qRT-PCR assay was evaluated for its detection limit, strain coverage and cross-reactivity. We further assessed the clinical applicability of qRT-PCR assay for ZIKV RNA detection using a total 18 simulated clinical specimens. The detection limit of the qRT-PCR assay was 11.276 ZIKV RNA copies at the 95% probability level (probit analysis, p<= 0.05). Both Asian and African ZIKV strains were detected by the qRT-PCR assay without cross-reacting with DENV-1, DENV-2, DENV-3, DENV-4, CHIKV, JEV, LGTV, GETV and SINV. The qRT-PCR assay demonstrated a perfect agreement (k = 1.000, P < 0.001) with the reference assay; the sensitivity and specificity of the qRT-PCR assay were 100% (95% CI= 79.6-100) and 100% (95% CI= 43.9-100) respectively. The qRT-PCR assay developed in this study is a useful diagnostic tool for the broad coverage detection and quantification of both the Asian and African ZIKV strains.
    Matched MeSH terms: Reverse Transcription
  14. Teoh BT, Sam SS, Tan KK, Johari J, Danlami MB, Hooi PS, et al.
    BMC Infect Dis, 2013;13:387.
    PMID: 23964963 DOI: 10.1186/1471-2334-13-387
    BACKGROUND: Early and rapid detection of dengue virus (DENV) infection during the febrile period is crucial for proper patient management and prevention of disease spread. An easy to perform and highly sensitive method is needed for routine implementation especially in the resource-limited rural healthcare settings where dengue is endemic.
    METHODS: A single-tube reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay with a set of nine primers was developed for the detection of all four DENV serotypes and their different genotypes. The sensitivity and specificity of the RT-LAMP were evaluated. The clinical applicability of RT-LAMP assay for detection of DENV RNA was assessed in a total of 305 sera of clinically-suspected dengue patients. The test results of RT-LAMP were statistically compared to those of quantitative reverse transcription-polymerase chain reaction (qRT-PCR), IgM- and IgG-capture enzyme-linked immunosorbent assays (ELISA).
    RESULTS: Acute DENV infection was confirmed in 171 samples (n = 305); 43.3% (74/171) and 46.8% (80/171) of the samples were positive for DENV using RT-LAMP and qRT-PCR, respectively. The combination of RT-LAMP with the dengue IgM and IgG ELISA increased detection of acute DENV infection to 97.7% (167/171), in comparison to only 70.8% (121/171) when dengue IgM and IgG ELISA alone were used. The RT-LAMP assays showed high concordance (κ = 0.939) with the qRT-PCR. The RT-LAMP assay detected up to 10 copies of virus RNA within an hour but 100% reproducibility (12/12) was achieved with 100 copies. There was no cross reactivity of RT-LAMP with other closely related arboviruses.
    CONCLUSION: The RT-LAMP assay developed in this study is sensitive, specific and simple to perform. The assay improved the detection of dengue when used in combination with serological methods.
    Matched MeSH terms: Reverse Transcription
  15. Etemadi MR, Sekawi Z, Othman N, Lye MS, Moghaddam FY
    Evol Bioinform Online, 2013;9:151-61.
    PMID: 23641140 DOI: 10.4137/EBO.S10999
    Human respiratory syncytial virus (RSV) is a major viral pathogen associated with acute lower respiratory tract infections (ALRTIs) among hospitalized children. In this study, the genetic diversity of the RSV strains was investigated among nasopharyngeal aspirates (NPA) taken from children less than 5 years of age hospitalized with ALRTIs in Hospital Serdang, Malaysia. A total of 165 NPA samples were tested for the presence of RSV and other respiratory viruses from June until December 2009. RSV was found positive in 83 (50%) of the samples using reverse transcription polymerase chain reaction (RT-PCR). Further classification of 67 RSV strains showed that subgroups A and B comprised 11/67 (16.4%) and 56/67 (83.6%) of the strains, respectively. The second hypervariable region at the carboxyl-terminal of the G gene was amplified and sequenced in order to do phylogenetic study. The phylogenetic relationships of the samples were determined separately for subgroups A and B using neighbor joining (NJ), maximum parsimony (MP), and Bayesian inference (BI). Phylogenetic analysis of the 32 sequenced samples showed that all 9 RSV-A strains were clustered within NA1 genotype while the remaining 23 strains of the RSV-B subgroup could be grouped into a clade consisted of strains with 60-nucleotide duplication region. They were further classified into newly discovered BA10 and BA9 genotypes. The present finding suggests the emergence of RSV genotypes of NA1 and BA. This is the first documentation of the phylogenetic relationship and genetic diversity of RSV strains among hospitalized children diagnosed with ALRTI in Serdang, Malaysia.
    Matched MeSH terms: Reverse Transcription
  16. He PY, Yip WK, Chai BL, Chai BY, Jabar MF, Dusa N, et al.
    Oncol Rep, 2017 Dec;38(6):3554-3566.
    PMID: 29039592 DOI: 10.3892/or.2017.6037
    The objective of this study was to determine the effect of miR‑29a‑3p inhibitor on the migration and invasion of colorectal cancer cell lines (CRC) and the underlying molecular mechanisms. miR‑29a‑3p was detected using reverse transcription-quantitative polymerase chain reaction (RT‑qPCR) in the CRC cell lines HCT11, CaCo2, HT29, SW480 and SW620. An invasive subpopulation designated SW480‑7 was derived from the parental cell line, detected by Transwell and Transwell Matrigel assays. Cytoskeleton Regulators RT2 profiler PCR array and western blot analysis were utilized to identify the alterations in expression of downstream mRNAs. siRNA against CDC42BPA was transfected into SW480‑7 and effects on cell migration and invasion were investigated. Data obtained showed that miR‑29a‑3p was detected in these five CRC cell lines. miR‑29a‑3p inhibitor had no effect on viability but stimulated cell migration and invasion of SW480‑7 cells. In contrast, miR‑29a‑3p mimic suppressed cell migration and invasion. TargetScan miRBD and DIANA were employed to identify the potential direct target genes of miR‑29a‑3p in the Cytoskeleton Regulators RT2-Profiler PCR array. Cytoskeleton Regulators RT2-Profiler PCR array data showed that 3 out of the 5 predicted targets genes, CDC42BPA (2.33-fold), BAIAP2 (1.79-fold) and TIAM1 (1.77-fold), in the array were upregulated by miR‑29a‑3p. A significant increase in expression IQGAP2, PHLDB2, SSH1 mRNAs and downregulation of PAK1 mRNA was also detected with miR‑29a‑3p inhibition. Increase in CDC42BPA, SSH1 and IQGAP2 mRNA expression correlated with increased protein level in miR‑29a‑3p transfected SW-480-7 cells. Silencing of CDC42BPA (an enhancer of cell motility) partially abolished miR‑29a‑3p inhibitor-induced stimulation of cell migration and invasion. miR‑29a‑3p expression in stage II and III CRC is relatively lower than that of stage I CRC. However, the data need to be interpreted with caution due to the small sample size. In conclusion, inhibition of miR‑29a‑3p stimulates SW480‑7 cell migration and invasion and downstream expression IQGAP2, PHLDB2, SSH1 mRNAs are upregulated whilst PAK1 mRNA is downregulated. Silencing of CDC42BPA expression partially reduces miR29a‑3p inhibitor-induced migration and invasion of SW480‑7 cells.
    Matched MeSH terms: Reverse Transcription
  17. Wong CL, Yong CY, Ong HK, Ho KL, Tan WS
    Front Vet Sci, 2020;7:477.
    PMID: 32974392 DOI: 10.3389/fvets.2020.00477
    Foot-and-mouth disease (FMD) is a devastating livestock disease caused by foot-and-mouth disease virus (FMDV). Outbreaks of this disease in a country always result in conspicuous economic losses to livestock industry and subsequently lead to serious socioeconomic damages due to the immediate imposition of trade embargo. Rapid and accurate diagnoses are imperative to control this infectious virus. In the current review, enzyme-linked immunosorbent assay (ELISA)-based methods used in FMD diagnosis are extensively reviewed, particularly the sandwich, liquid-phase blocking, and solid-phase competition ELISA. The differentiation of infected animals from vaccinated animals using ELISA-based methods is also highlighted, in which the role of 3ABC polyprotein as a marker is reviewed intensively. Recently, more studies are focusing on the molecular diagnostic methods, which detect the viral nucleic acids based on reverse transcription-polymerase chain reaction (RT-PCR) and RT-loop-mediated isothermal amplification (RT-LAMP). These methods are generally more sensitive because of their ability to amplify a minute amount of the viral nucleic acids. In this digital era, the RT-PCR and RT-LAMP are progressing toward the mobile versions, aiming for on-site FMDV diagnosis. Apart from RT-PCR and RT-LAMP, another diagnostic assay specifically designed for on-site diagnosis is the lateral flow immunochromatographic test strips. These test strips have some distinct advantages over other diagnostic methods, whereby the assay often does not require the aid of an external device, which greatly lowers the cost per test. In addition, the on-site diagnostic test can be easily performed by untrained personnel including farmers, and the results can be obtained in a few minutes. Lastly, the use of FMDV diagnostic assays for progressive control of the disease is also discussed critically.
    Matched MeSH terms: Reverse Transcription
  18. Siew Ching H, Thirumulu Ponnuraj K, Luddin N, Ab Rahman I, Nik Abdul Ghani NR
    Polymers (Basel), 2020 Sep 17;12(9).
    PMID: 32957636 DOI: 10.3390/polym12092125
    This study aimed to investigate the effects of nanohydroxyapatite-silica-glass ionomer cement (nanoHA-silica-GIC) on the differentiation of dental pulp stem cells (DPSCs) into odontogenic lineage. DPSCs were cultured in complete Minimum Essential Medium Eagle-Alpha Modification (α-MEM) with or without nanoHA-silica-GIC extract and conventional glass ionomer cement (cGIC) extract. Odontogenic differentiation of DPSCs was evaluated by real-time reverse transcription polymerase chain reaction (rRT-PCR) for odontogenic markers: dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP1), osteocalcin (OCN), osteopontin (OPN), alkaline phosphatase (ALP), collagen type I (COL1A1), and runt-related transcription factor 2 (RUNX2) on day 1, 7, 10, 14, and 21, which were normalized to the house keeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Untreated DPSCs were used as a control throughout the study. The expressions of DSPP and DMP1 were higher on days 7 and 10, that of OCN on day 10, those of OPN and ALP on day 14, and that of RUNX2 on day 1; COL1A1 exhibited a time-dependent increase from day 7 to day 14. Despite the above time-dependent variations, the expressions were comparable at a concentration of 6.25 mg/mL between the nanoHA-silica-GIC and cGIC groups. This offers empirical support that nanoHA-silica-GIC plays a role in the odontogenic differentiation of DPSCs.
    Matched MeSH terms: Reverse Transcription
  19. Lau YL, Ismail IB, Izati Binti Mustapa N, Lai MY, Tuan Soh TS, Hassan AH, et al.
    Am J Trop Med Hyg, 2020 Dec;103(6):2350-2352.
    PMID: 33098286 DOI: 10.4269/ajtmh.20-1079
    A simple and rapid reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of SARS-CoV-2. The RT-LAMP assay was highly specific for SARS-CoV-2 and was able to detect one copy of transcribed SARS-CoV-2 RNA within 24 minutes. Assay validation performed using 50 positive and 32 negative clinical samples showed 100% sensitivity and specificity. The RT-LAMP would be valuable for clinical diagnosis and epidemiological surveillance of SARS-CoV-2 infection in resource-limited areas as it does not require the use of sophisticated and costly equipment.
    Matched MeSH terms: Reverse Transcription
  20. Buskaran K, Bullo S, Hussein MZ, Masarudin MJ, Mohd Moklas MA, Fakurazi S
    Materials (Basel), 2021 Feb 09;14(4).
    PMID: 33572054 DOI: 10.3390/ma14040817
    Liver cancer is listed as the fifth-ranked cancer, responsible for 9.1% of all cancer deaths globally due to its assertive nature and poor survival rate. To overcome this obstacle, efforts have been made to ensure effective cancer therapy via nanotechnology utilization. Recent studies have shown that functionalized graphene oxide (GO)-loaded protocatechuic acid has shown some anticancer activities in both passive and active targeting. The nanocomposites' physicochemical characterizations were conducted. A lactate dehydrogenase experiment was conducted to estimate the severity of cell damage. Subsequently, a clonogenic assay was carried out to examine the colony-forming ability during long-term exposure of the nanocomposites. The Annexin V/ propidium iodide analysis showed that nanocomposites induced late apoptosis in HepG2 cells. Following the intervention of nanocomposites, cell cycle arrest was ascertained at G2/M phase. There was depolarization of mitochondrial membrane potential and an upregulation of reactive oxygen species when HepG2 cells were induced by nanocomposites. Finally, the proteomic profiling array and quantitative reverse transcription polymerase chain reaction revealed the expression of pro-apoptotic and anti-apoptotic proteins induced by graphene oxide conjugated PEG loaded with protocatechuic acid drug folic acid coated nanocomposite (GOP-PCA-FA) in HepG2 cells. In conclusion, GOP-PCA-FA nanocomposites treated HepG2 cells exhibited significant anticancer activities with less toxicity compared to pristine protocatechuic acid and GOP-PCA nanocomposites, due to the utilization of a folic acid-targeting nanodrug delivery system.
    Matched MeSH terms: Reverse Transcription
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links