Displaying all 11 publications

Abstract:
Sort:
  1. Lim SY, Dora R, Yatiman NH, Wong JE, Haron H, Poh BK
    Appetite, 2021 12 01;167:105629.
    PMID: 34364967 DOI: 10.1016/j.appet.2021.105629
    Studies have shown that monosodium glutamate (MSG) can enhance satiety and reduce appetite among infants and adults. In a multi-ethnic country such as Malaysia, it is also important to consider whether ethnic variations will influence the effects of MSG on appetite regulation. Thus, this crossover study aimed to investigate the effects of MSG on the subjective appetite and subsequent energy intake among Malaysian children from the three major ethnic groups, namely the Malays, Chinese and Indians. A total of 92 participants aged 9-11 years from the three ethnic groups were recruited for this study. A cup of low-energy vegetable preload soup (100g, with MSG or without MSG) was served to each of the participants on the day of the study, followed by an ad libitum meal 45 min later. Appetite ratings of hunger, fullness, desire to eat and desire to snack were recorded using visual analogue scale (VAS) before the preload, after the preload, before the ad libitum meal and after the ad libitum meal. Results showed that the subjective appetite of the children did not differ between preload conditions (MSG+ or MSG-) throughout the study. Malay, Chinese and Indian children had similar total energy intake during the subsequent meal after the consumption of preload soups. In conclusion, the addition of MSG to low energy preload neither influenced the perception of appetite nor total energy intake in a subsequent ad libitum meal among children. No difference attributable to the participants' ethnicity was observed. Future studies should be conducted to examine whether repeated ingestion of MSG-containing protein-rich preload has potential longer-term effects on appetite and subsequent meal intakes among children from different ethnicities.
    Matched MeSH terms: Sodium Glutamate*
  2. Yiin CL, Quitain AT, Yusup S, Uemura Y, Sasaki M, Kida T
    Bioresour Technol, 2017 Nov;244(Pt 1):941-948.
    PMID: 28847084 DOI: 10.1016/j.biortech.2017.08.043
    This work aimed to develop an efficient microwave-hydrothermal (MH) extraction of malic acid from abundant natural cactus as hydrogen bond donor (HBD) whereby the concentration was optimized using response surface methodology. The ideal process conditions were found to be at a solvent-to-feed ratio of 0.008, 120°C and 20min with 1.0g of oxidant, H2O2. Next generation environment-friendly solvents, low transition temperature mixtures (LTTMs) were synthesized from cactus malic acid with choline chloride (ChCl) and monosodium glutamate (MSG) as hydrogen bond acceptors (HBAs). The hydrogen-bonding interactions between the starting materials were determined. The efficiency of the LTTMs in removing lignin from oil palm biomass residues, empty fruit bunch (EFB) was also evaluated. The removal of amorphous hemicellulose and lignin after the pretreatment process resulted in an enhanced digestibility and thermal degradability of biomass.
    Matched MeSH terms: Sodium Glutamate*
  3. Mehmood A, Alrajeh N, Mukherjee M, Abdullah S, Song H
    Sensors (Basel), 2018 Jun 01;18(6).
    PMID: 29865210 DOI: 10.3390/s18061787
    Although wireless sensor networks (WSNs) have been the object of research focus for the past two decades, fault diagnosis in these networks has received little attention. This is an essential requirement for wireless networks, especially in WSNs, because of their ad-hoc nature, deployment requirements and resource limitations. Therefore, in this paper we survey fault diagnosis from the perspective of network operations. To the best of our knowledge, this is the first survey from such a perspective. We survey the proactive, active and passive fault diagnosis schemes that have appeared in the literature to date, accenting their advantages and limitations of each scheme. In addition to illuminating the details of past efforts, this survey also reveals new research challenges and strengthens our understanding of the field of fault diagnosis.
    Matched MeSH terms: Sodium Glutamate
  4. Thuy DTB, Nguyen A, Khoo KS, Chew KW, Cnockaert M, Vandamme P, et al.
    Bioengineered, 2021 12;12(1):54-62.
    PMID: 33350336 DOI: 10.1080/21655979.2020.1857626
    This study was aimed to identify and optimize the culture conditions for gamma-aminobutyric acid (GABA) production by a lactic acid bacterium strain isolated from mam nem, a fermented fish sauce. Among the six isolates obtained from mam nem, the MN12 had the most potent GABA-producing capability. The strain was then identified to be Pedioccocus pentosaceus by employing MALDI-TOF-MS and phenylalanyl-tRNA synthase sequencing methods. The initial cell density of 5.106 CFU/mL, monosodium glutamate concentration of 60 mM, initial pH of 7, temperature of 45°C and cultivation time of 72 h were found to be the optimal culture conditions for highest production of GABA, reaching 27.9 ± 0.42 mM, by this strain. The cultivation conditions for GABA production by P. pentosaceus MN12 have been successfully optimized, providing a foundation for the development of fermented foods enriched with GABA.
    Matched MeSH terms: Sodium Glutamate
  5. Narayanan SN, Kumar RS, Paval J, Nayak S
    Bratisl Lek Listy, 2010;111(5):247-52.
    PMID: 20568412
    In the current study we evaluated adverse effects of monosodium glutamate (MSG) on memory formation and its retrieval as well as the role of ascorbic acid (Vitamin-C) in prevention of MSG-induced alteration of neurobehavioral performance in periadolescent rats.
    Matched MeSH terms: Sodium Glutamate/pharmacology*
  6. Aung HP, Pyell U
    J Chromatogr A, 2016 Jun 3;1449:156-65.
    PMID: 27156753 DOI: 10.1016/j.chroma.2016.04.033
    For the rapid simultaneous determination of monosodium glutamate (MSG), benzoic acid (BA), and sorbic acid (SA) in canned food and other processed food samples, we developed a method that combines in-capillary derivatization with separation by capillary electrophoresis. This method employs the rapid derivatization of MSG with o-phthalaldehyde (OPA) in the presence of 3-mercaptopropionic acid (3-MPA) and enables the detection of the resulting OPA-MSG derivative and of non-derivatized BA and SA at 230nm. The composition of the background electrolyte and the parameters of derivatization and separation are as follows: 25mM borax containing 5mM OPA and 6mM 3-MPA, separation voltage 25mV, injection at 30mbar for 20s, and column temperature 25°C. Because of the high reaction rate and suitably adapted effective electrophoretic mobilities, band broadening due to the derivatization reaction at the start of the separation process is kept to a minimum. The optimized method is validated with respect to LOD, LOQ, linearity, recovery, and precision. This method can be applied to real samples such as soy, fish, oyster and sweet and sour chili sauces after application of appropriate clean-up steps. Mechanisms of zone broadening and zone focusing are discussed showing the validity of the employed theoretical approach regarding the dependence of the peak shape for OPA-MSG on the concentration of MSG in the sample.
    Matched MeSH terms: Sodium Glutamate
  7. Erni Norfardila Abu Hanipah, Nor Janna Yahya, Esther Mathias Ajik, Nur Afizah Yusoff, Izatus Shima Taib
    Jurnal Sains Kesihatan Malaysia, 2018;16(101):67-73.
    MyJurnal
    Monosodium glutamate (MSG) is widely used as a food additive but its excessive intake leads to oxidative stress of several organs. However, the oxidative effect of MSG on male accessory reproductive organs remains unclear. Therefore, the aim of this study was to evaluate the effect of MSG on the status of oxidative stress and morphological alterations in the male accessory reproductive organs such as epididymis, prostate glands and seminal vesicle of Sprague-Dawley rats. A total of 24 male Sprague-Dawley rats were randomly divided into three groups with 8 rats per group. Control group received distilled water (1 ml/kg) while MSG60 and MSG120 received 60 mg/kg and 120 mg/kg of MSG, respectively. All the substances were administered via force feed oral for 28 consecutive days. At the end of the study, the rats were sacrificed to obtain the accessory organs for biochemical analysis and histological observations. The SOD activity in the epididymis showed a significant increase in MSG60 and MSG120 compared to control (p < 0.05). The GSH levels in the epididymis of MSG 120 showed a significant reduction (p < 0.05) compared to the control group. The levels of MDA and PC in the epididymis and prostate gland of MSG60 and MSG120 showed a significant increased (p < 0.05) compared to the control group. Histological alterations were found in the epididymis and prostate gland of MSG treated rats. In conclusion, MSG at both doses induced oxidative stress in the epididymis and prostate gland of experimental rats.
    Matched MeSH terms: Sodium Glutamate
  8. Jubaidi FF, Mathialagan RD, Noor MM, Taib IS, Budin SB
    Syst Biol Reprod Med, 2019 Jun;65(3):194-204.
    PMID: 30773941 DOI: 10.1080/19396368.2019.1573274
    Monosodium glutamate (MSG) is widely used in food preparation industry and has been consumed regularly. Previous studies had reported on effects of MSG when given at extremely high dosages, the results are not applicable to human equivalent intake. Therefore, the present study aimed to evaluate the effect of MSG on sperm quality and changes in reproductive organs of adult male rats when taken at average human daily intake (ADI). Twenty-four adult male rats were randomly assigned into three groups; NC (Normal control), MSG60 and MSG120 where MSG was given orally at 60 mg/kg and 120 mg/kg to each respective group. All treatments were conducted for 28 consecutive days. MSG at estimated ADI of 120 mg/kg body weight resulted in a significant drop in sperm quality (p
    Matched MeSH terms: Sodium Glutamate/adverse effects*
  9. Uti DE, Atangwho IJ, Eyong EU, Umoru GU, Egbung GE, Nna VU, et al.
    Biomed Pharmacother, 2020 Apr;124:109879.
    PMID: 31991383 DOI: 10.1016/j.biopha.2020.109879
    AIMS: African walnuts were previously shown to modulate hepatic lipid bio-accumulation in obesity. Herein, we investigated the impact of the nuts on fat accumulation in adipose and ectopic regions, and associated oxidatiive stress status in obese rats.

    MATERIALS AND METHODS: Whole ethanol extract (WE) of the nuts, and its liquid-liquid fractions-ethyl acetate (ET) and residue (RES) were separately administered to obese rats for 6 weeks. The normal (NC) and obese (OC) controls received normal saline and the standard control (SC), orlistat (5.14 mg/kg b.w.), during the same period. Thereafter, the animals were euthanized and the adipose, brain, kidneys and heart tissues were studied.

    RESULTS: The change in body weight to naso-anal length which increased by 63.52 % in OC compared to NC (p < 0.05), decreased by 57.88, 85.80 and 70.20 % in WE, ET and RES-treated groups, respectively, relative to the OC (p < 0.05). Also, adipose tissue weights were lowered upon treatment with the extracts and fractions versus OC (p < 0.05). Total lipids, phospholipids, triacylglycerol and cholesterol concentrations in the studied tissues which were higher in OC (p < 0.05) were lowered (p < 0.05) and compared favorably with SC. Further, malondialdehyde levels in the tissues were lowered upon treatment, compared to the OC (p < 0.05). Glutathione level and activities of glutathione peroxidase, superoxide dismutase and glutathione-S-transferase which were decreased (p < 0.05) in OC, were restored upon treatment with the extracts, relative to the obese control (p < 0.05).

    SIGNIFICANCE: African walnuts assuaged lipogenesis, oxidative stress and peroxidation in extra-hepatic tissues of obese rats, hence, may attenuate ectopic fat accumulation and its associated pathogenesis.

    Matched MeSH terms: Sodium Glutamate/toxicity
  10. Muhilal
    MyJurnal
    Various studies conducted in Indonesia have shown that administration of Vitamin A to pre-school children had decreased the mortality and morbidity rates among them. In the first study conducted in the province of Acheh in North Sumatra, a twice yearly high dose of vitamin A led to a 34% decrease in mortality. In a second study in Bogor, conducted by fortifying the nutritional additive MSG with vitamin A and distributing the product in a designated area, the mortality rate among preschool children was 45% less than in a control area. In the third study also conducted in Bogor, where vitamin A was given to lactating women 2 weeks after giving birth and then directly to the infants themselves after 5 months of age, the mortality rate was 38% lower. The prevalences of respiratory and diarrhoeal infections were statistically lower than in the control gorups. Another study on preschool children showed a two-fold increase of anti TT IgG on primary immunisation against tetanus when compared to a control group and a four-fold increase with a secondary immunisation. Other studies conducted in Bogor and other parts of the world have showed that smaller doses given more often are more effective than bigger doses given less often.
    Matched MeSH terms: Sodium Glutamate
  11. Lee TH, Wani WA, Koay YS, Kavita S, Tan ETT, Shreaz S
    Food Res Int, 2017 10;100(Pt 1):14-27.
    PMID: 28873672 DOI: 10.1016/j.foodres.2017.07.036
    Edible bird's nest (EBN) is an expensive animal bioproduct due to its reputation as a food and delicacy with diverse medicinal properties. One kilogram of EBN costs ~$6000 in China. EBN and its products are consumed in mostly Asian countries such as China, Hong Kong, Taiwan, Singapore, Malaysia, Indonesia, Vietnam and Thailand, making up almost 1/3 of world population. The rapid growth in EBN consumption has led to a big rise in the trade scale of its global market. Presently, various fake materials such as tremella fungus, pork skin, karaya gum, fish swimming bladder, jelly, agar, monosodium glutamate and egg white are used to adulterate EBNs for earning extra profits. Adulterated or fake EBN may be hazardous to the consumers. Thus, it is necessary to identify of the adulterants. Several sophisticated techniques based on genetics, immunochemistry, spectroscopy, chromatography and gel electrophoresis have been used for the detection of various types of adulterants in EBN. This article describes the recent advances in the authentication methods for EBN. Different genetic, immunochemical, spectroscopic and analytical methods such as genetics (DNA) based techniques, enzyme-linked immunosorbent assays, Fourier transform infrared and Raman spectroscopic techniques, and chromatographic and gel electrophoretic methods have been discussed. Besides, significance of the reported methods that might pertain them to applications in EBN industry has been described. Finally, efforts have been made to discuss the challenges and future perspectives of the authentication methods for EBN.
    Matched MeSH terms: Sodium Glutamate
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links