Displaying all 14 publications

Abstract:
Sort:
  1. Abisha S, Mutawa AM, Murugappan M, Krishnan S
    PLoS One, 2023;18(4):e0284021.
    PMID: 37018344 DOI: 10.1371/journal.pone.0284021
    Different diseases are observed in vegetables, fruits, cereals, and commercial crops by farmers and agricultural experts. Nonetheless, this evaluation process is time-consuming, and initial symptoms are primarily visible at microscopic levels, limiting the possibility of an accurate diagnosis. This paper proposes an innovative method for identifying and classifying infected brinjal leaves using Deep Convolutional Neural Networks (DCNN) and Radial Basis Feed Forward Neural Networks (RBFNN). We collected 1100 images of brinjal leaf disease that were caused by five different species (Pseudomonas solanacearum, Cercospora solani, Alternaria melongenea, Pythium aphanidermatum, and Tobacco Mosaic Virus) and 400 images of healthy leaves from India's agricultural form. First, the original plant leaf is preprocessed by a Gaussian filter to reduce the noise and improve the quality of the image through image enhancement. A segmentation method based on expectation and maximization (EM) is then utilized to segment the leaf's-diseased regions. Next, the discrete Shearlet transform is used to extract the main features of the images such as texture, color, and structure, which are then merged to produce vectors. Lastly, DCNN and RBFNN are used to classify brinjal leaves based on their disease types. The DCNN achieved a mean accuracy of 93.30% (with fusion) and 76.70% (without fusion) compared to the RBFNN (82%-without fusion, 87%-with fusion) in classifying leaf diseases.
    Matched MeSH terms: Solanum melongena*
  2. Govender N, Zulkifli NS, Badrul Hisham NF, Ab Ghani NS, Mohamed-Hussein ZA
    PeerJ, 2022;10:e14168.
    PMID: 36518265 DOI: 10.7717/peerj.14168
    BACKGROUND: Pea eggplant (Solanum torvum Swartz) commonly known as turkey berry or 'terung pipit' in Malay is a vegetable plant widely consumed by the local community in Malaysia. The shrub bears pea-like turkey berry fruits (TBFs), rich in phytochemicals of medicinal interest. The TBF phytochemicals hold a wide spectrum of pharmacological properties. In this study, the TBF phytochemicals' potential inhibitory properties were evaluated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of the Coronavirus disease 2019 (COVID-19). The TBF polyphenols were screened against SARS-CoV receptors via molecular docking and the best receptor-ligand complex was validated further by molecular dynamics (MD) simulation.

    METHOD: The SARS-CoV receptor structure files (viral structural components) were retrieved from the Protein Data Bank (PDB) database: membrane protein (PDB ID: 3I6G), main protease (PDB ID: 5RE4), and spike glycoproteins (PDB ID: 6VXX and 6VYB). The receptor binding pocket regions were identified by Discovery Studio (BIOVIA) for targeted docking with TBF polyphenols (genistin, kaempferol, mellein, rhoifolin and scutellarein). The ligand and SARS-CoV family receptor structure files were pre-processed using the AutoDock tools. Molecular docking was performed with the Lamarckian genetic algorithm using AutoDock Vina 4.2 software. The best pose (ligand-receptor complex) from the molecular docking analysis was selected based on the minimum binding energy (MBE) and extent of structural interactions, as indicated by BIOVIA visualization tool. The selected complex was validated by a 100 ns MD simulation run using the GROMACS software. The dynamic behaviour and stability of the receptor-ligand complex were evaluated by the root mean square displacement (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), solvent accessible surface volume (SASV) and number of hydrogen bonds.

    RESULTS: At RMSD = 0, the TBF polyphenols showed fairly strong physical interactions with SARS-CoV receptors under all possible combinations. The MBE of TBF polyphenol-bound SARS CoV complexes ranged from -4.6 to -8.3 kcal/mol. Analysis of the structural interactions showed the presence of hydrogen bonds, electrostatic and hydrophobic interactions between the receptor residues (RR) and ligands atoms. Based on the MBE values, the 3I6G-rhoifolin (MBE = -8.3 kcal/mol) and 5RE4-genistin (MBE = -7.6 kcal/mol) complexes were ranked with the least value. However, the latter showed a greater extent of interactions between the RRs and the ligand atoms and thus was further validated by MD simulation. The MD simulation parameters of the 5RE4-genistin complex over a 100 ns run indicated good structural stability with minimal flexibility within genistin binding pocket region. The findings suggest that S. torvum polyphenols hold good therapeutics potential in COVID-19 management.

    Matched MeSH terms: Solanum melongena*
  3. Page A, Gibson J, Meyer RS, Chapman MA
    Mol Biol Evol, 2019 07 01;36(7):1359-1372.
    PMID: 31039581 DOI: 10.1093/molbev/msz062
    In the context of food security, examining the genomics of domestication will help identify genes underlying adaptive and economically important phenotypes, for example, larger fruit, improved taste, and loss of agronomically inferior phenotypes.  Examination of genome-scale single nucleotide polymorphisms demonstrates the relationships between wild ancestors of eggplant (Solanum melongena L.), confirming that Solanum insanum L. is the wild progenitor. This species is split roughly into an Eastern (Malaysian, Thai, and Vietnamese) and Western (Indian, Madagascan, and Sri Lankan) group, with domesticates derived from the former. Additional "wild" accessions from India appear to be feral escapes, derived multiple times from domesticated varieties through admixture. Accessions with small egg-shaped fruit are generally found intermixed with East Asian Solanum insanum confirming they are primitive relative to the large-fruited domesticates.  Comparative transcriptomics was used to track the loci under selection. Sequence analysis revealed a genetic bottleneck reducing variation by almost 50% in the primitive accessions relative to the wild species and a further 10% in the landraces. We also show evidence for selection on genes with a role in response to wounding and apoptosis.  Genes showing a significant difference in expression between wild and primitive or between primitive and landrace genepools were mostly (>75%) downregulated in the derived populations and enriched for gene ontologies related to defense, flowering, signaling, and response to biotic and abiotic stimuli.  This work reveals genomic changes involved in crop domestication and improvement, and the population genetics work explains why defining the eggplant domestication trajectory has been so challenging.
    Matched MeSH terms: Solanum melongena/anatomy & histology; Solanum melongena/genetics*; Solanum melongena/metabolism
  4. Musa I, Rafii MY, Ahmad K, Ramlee SI, Md Hatta MA, Oladosu Y, et al.
    Plants (Basel), 2020 Nov 15;9(11).
    PMID: 33203189 DOI: 10.3390/plants9111583
    Grafting is regarded as an integral component of sustainable vegetable production. It is important in the management of soil-borne diseases, and reports suggest that grafting with viable rootstocks can enhance crop growth and yield. This research was conducted using splices and cleft grafting techniques to investigate graft compatibility among varieties of high yielding eggplant scion (MCV1, MCV2, CCV1, CCV2, CCV3, NCV, and TCV) grafted onto wild rootstocks (MWR, BWR, and TWR) to study their morphophysiological and yield characteristics. High yielding scions grafted onto wild relative rootstocks were compared with two controls including self-grafted and non-grafted. All the scion had a high rate of germination (≥95%) and remarkable graft success (100%) was recorded in MCV1, MCV2, and TCV using the cleft techniques. Generally, the use of rootstocks resulted in higher total and marketable fruit yield compared to the non-grafted and self-grafted scion plants, respectively. In particular, MWR and TWR rootstock conferred the highest vigour to the scion, resulting in the highest values recorded for total and marketable fruit yield, number of fruits per plant and average fruit weight. A similar result was obtained in fruit length and diameter, where long and wide fruits were observed in scions grafted onto MWR and TWR rootstocks, respectively. Grafting of high yielding eggplant scion onto resistant MWR, BWR and TWR eggplant rootstock was found to be beneficial for eggplant cultivation. The remarkable compatibility and vigour of the rootstock with scion led to the improvement in total and marketable yield of the fruits. As such, it can be concluded that the use of wild relative rootstocks of eggplant species can be a valuable method of improving eggplant production.
    Matched MeSH terms: Solanum melongena
  5. Wan Ishak, W.I., Kit, W.H., Awwal, M. A.
    MyJurnal
    This paper describes the design and development of harvesting system for the gantry system to harvest eggplants. For this purpose, the harvesting robot was successfully designed and fabricated for the gantry system to harvest eggplants. The operation of the harvester was controlled by Programmable Logic Controller (PLC). Basically, the limit switches, DC motor, and relay are connected to the PLC. Meanwhile, a PLC ladder diagram was designed and developed to control the operation of the eggplant harvester. A visual basic programme was developed to interface the harvester with a greenhouse gantry control system. A videogrammetry method was employed to calculate the distance between the stems of eggplants and the cutter of robot end effector. The end effector used electric as its power source and it was controlled via Programmable Logic Controller (PLC). Visual Basic Programme was developed to interface the harvester with the gantry control system. The accuracy of the videogrammetry was tested to be 67.2% for X-axis, 88.2% for Y-axis and 84.7% for Z-axis. Meanwhile, the speed of the end effector for harvester is 2.4 km/h and it could lift up to 55 cm. In order to determine detachment force of eggplant, 16 samples of mature eggplants were tested in a greenhouse, and as a result, more than 22.76 N force was needed to detach a mature eggplant inside the gantry system.
    Matched MeSH terms: Solanum melongena
  6. Khan MA, Mehmood S, Ullah F, Khattak A, Zeb MA
    Sains Malaysiana, 2017;46:917-924.
    The present study investigated the concentration of metals in commonly grown vegetables (Luffa acutangula L., Zea mays L., Solanum melongena L.) irrigated with waste water in District Bannu, Khyber Pakhtunkhwa, Pakistan. The pH (5.80) and electrical conductivity (13 dS/m) of waste water indicated the acidic nature that is not suitable for irrigation purposes. Soil and vegetables samples were analyzed for metals concentration through flame atomic absorption spectrometry (Varian FAAS-240). The findings showed that waste water irrigated soil was highly contaminated with Cd (4.62 mg/kg) which was above permissible limits set by European Union Standard (EU 2006, 2002). The concentrations of heavy metals such as Cr and Cd in vegetables were higher than the permissible limits set by World Health Organization/Food and Agriculture Organization U.S.A guidelines 2001. The health hazard quotient (HQ) of waste water irrigated vegetables was observed higher for Ni (0.699-0.1029 mg/kg), (0.0456-0.1040 mg/kg), (0.731-0.0994 mg/kg) in Luffa acutangula, Solanum melongena and Zea mays, respectively. The study concluded that the consumption of commonly grown vegetables in waste water zone of the study area may pose potential health threats in local population.
    Matched MeSH terms: Solanum melongena
  7. Golkhandan E, Kamaruzaman S, Sariah M, Abidin MAZ, Nazerian E, Yassoralipour A
    Plant Dis, 2013 May;97(5):685.
    PMID: 30722205 DOI: 10.1094/PDIS-08-12-0759-PDN
    In August 2011, sweet potato (Ipomoea batatas), tomato (Solanum lycopersicum), and eggplant (S. melongena) crops from major growing areas of the Cameron highlands and Johor state in Malaysia were affected by a soft rot disease. Disease incidence exceeded 80, 75, and 65% in severely infected fields and greenhouses of sweet potato, tomato, and eggplant, respectively. The disease was characterized by dark and small water-soaked lesions or soft rot symptoms on sweet potato tubers, tomato stems, and eggplant fruits. In addition, extensive discoloration of vascular tissues, stem hollowness, and water-soaked, soft, dark green lesions that turned brown with age were observed on the stem of tomato and eggplant. A survey was performed in these growing areas and 22 isolates of the pathogen were obtained from sweet potato (12 isolates), tomato (6 isolates), and eggplant (4 isolates) on nutrient agar (NA) and eosin methylene blue (EMB) (4). The cultures were incubated at 27°C for 2 days and colonies that were emerald green on EMB or white to gray on NA were selected for further studies. All bacterial cultures isolated from the survey exhibited pectolytic ability on potato slices. These bacterial isolates were gram negative; rod shaped; N-acetylglucosaminyl transferase, gelatin liquefaction, and OPNG positive; and were also positive for acid production from D-galactose, lactosemelibiose, raffinose, citrate, and trehalose. They were negative for indol production, phosphatase activity, reducing substances from sucrose, and negative for acid production from maltose, sorbitol, inositol, inolin, melezitose, α-mathyl-D-glocoside, and D-arabitol. The bacteria did not grow on NA at 37°C. Based on these biochemical and morphological assays, the pathogen was identified as Pectobacterium wasabiae (2). In addition, DNA was extracted and PCR assay with two primers (16SF1 and 16SR1) was performed (4). Partial sequences of 16S rRNA (GenBank Accession Nos. JQ665714, JX494234, and JX513960) of sweet potato, tomato, and eggplant, respectively, exhibited a 99% identity with P. wasabiae strain SR91 (NR_026047 and NR_026047.1). A pathogenicity assay was carried out on sweet potato tubers (cv. Oren), tomato stems (cv. 152177-A), and eggplant fruits (cv. 125066x) with 4 randomly representative isolates obtained from each crop. Sweet potato tubers, tomato stems, and eggplant fruits (4 replications) were sanitized in 70% ethyl alcohol for 30 s, washed and rinsed in sterile distilled water, and needle punctured with a bacterial suspension at a concentration of 108 CFU/ml. Inoculated tubers, stems, and fruits were incubated in a moist chamber at 90 to 100% RH for 72 h at 25°C when lesions were measured. All inoculated tubers, stems, and fruits exhibited soft rot symptoms after 72 h similar to those observed in the fields and greenhouses and the same bacteria were consistently reisolated. Symptoms were not observed on controls. The pathogenicty test was repeated with similar results. P. wasabiae have been previously reported to cause soft rot on Japanese horseradish (3), and aerial stem rot on potato in New Zealand (4), the U.S. (2), and Iran (1). To our knowledge, this is the first report of sweet potato, tomato, and eggplant soft rot caused by P. wasabiae in Malaysia. References: (1) S. Baghaee-Ravari et al. Eur. J. Plant Pathol. 129:413, 2011. (2) S. De Boer and A. Kelman. Page 56 in: Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd ed. N. Schaad et al., eds. APS Press, St. Paul, 2001. (3) M. Goto et al. Int. J. Syst. Bacteriol. 37:130, 1987. (4) A. R. Pitman et al. Eur. J. Plant Pathol. 126:423, 2010.
    Matched MeSH terms: Solanum melongena
  8. Nasehi A, Kadir JB, Esfahani MN, Mahmodi F, Ghadirian H, Ashtiani FA, et al.
    Plant Dis, 2013 May;97(5):689.
    PMID: 30722195 DOI: 10.1094/PDIS-10-12-0901-PDN
    In 2011, a severe gray leaf spot was observed on eggplant (Solanum melongena) in major eggplant growing areas in Malaysia, including the Pahang, Johor, and Selangor states. Disease incidence was >70% in severely infected areas of about 150 ha of eggplant greenhouses and fields examined. Symptoms initially appeared as small (1 to 5 mm diameter), brownish-black specks with concentric circles on the lower leaves. The specks then coalesced and developed into greyish-brown, necrotic lesions, which also appeared on the upper leaves. Eventually, the leaves senesced and were shed. Tissue cut from the edges of leaf spots were surface-sterilized in 1% NaOCl for 2 min, rinsed in sterilized water, dried, and incubated on potato dextrose agar (PDA). Fungal colonies were greyish green to light brown, and produced a yellow pigment. Single, muriform, brown, oblong conidia formed at the terminal end of each conidiophore, were each 21.6 to 45.6 μm long and 11.5 to 21.6 μm wide, and contained 2 to 7 transverse and 1 to 4 longitudinal septa. The conidiophores were tan to light brown and ≤220 μm long. Based on these morphological criteria, 25 isolates of the fungus were identified as Stemphylium solani (1). To produce conidia in culture, 7-day-old single-conidial cultures were established on potato carrot agar (PCA) and V8 juice agar media under an 8-h/16-h light/dark photoperiod at 25°C (4). Further confirmation of the identification was obtained by molecular characterization in which fungal DNA was extracted and the internal transcribed spacer (ITS) region of ribosomal DNA amplified using primers ITS5 and ITS4 (2), followed by direct sequencing. A BLAST search in the NCBI database revealed that the sequence was 99% identical with published ITS sequences for two isolates of S. solani (Accession Nos. AF203451 and HQ840713). The amplified ITS region was deposited in GenBank (JQ736023). Pathogenicity testing of a representative isolate was performed on detached, 45-day-old eggplant leaves of the cv. 125066-X under laboratory conditions. Four fully expanded leaves (one wounded and two non-wounded leaflets/leaf) were placed on moist filter paper in petri dishes, and each leaflet inoculated with a 20-μl drop of a conidial suspension containing 1 × 105 conidia/ml in sterilized, distilled water (3). The leaves were wounded by applying pressure to leaf blades with the serrated edge of forceps. Four control leaves were inoculated similarly with sterilized, distilled water. Inoculated leaves were incubated in humid chambers at 25°C with 95% RH and a 12-h photoperiod. After 7 days, symptoms similar to those observed in the original fields developed on both wounded and non-wounded inoculated leaves, but not on control leaves, and S. solani was reisolated consistently from the symptoms using the same method as the original isolations. Control leaves remained asymptomatic and the fungus was not isolated from these leaves. The pathogenicity testing was repeated with similar results. To our knowledge, this is the first report of S. solani on eggplant in Malaysia. References: (1) B. S. Kim et al. Plant Pathol. J. 20:85, 2004. (2) Y. R. Mehta et al. Curr. Microbiol. 44:323, 2002. (3) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (4) E. G. Simmons. CBS Biodiv. Series 6:775, 2007.
    Matched MeSH terms: Solanum melongena
  9. Ng, A.W.R., Wong, C.W.
    MyJurnal
    Polyphenol oxidase (PPO) catalyzes the conversion of phenolic compounds into o-quinones which will lead to food browning. This phenomenon causes huge implications on food industries, as it degrades food quality over time. By combining both ammonium sulphate precipitation and gel filtration chromatography, PPO was partially purified up to 5.26-fold with 11.23% yield. The enzyme activity was 5120 EU/mL using 4-methylcatechol as substrate. Maximal PPO activity was found at 30oC, pH 5.0 for 4-methylcatechol and 40°C, pH 6.0 for catechol. The PPO showed a higher affinity towards 4-methylcatechol but higher thermal stability when reacting with catechol. The Km and Vmax values were 5.00 mM, 2000 EU/ml for 4-methylcatechol and 10.79 mM, 526.32 EU/ml for catechol. Energy for inactivation (Ea) obtained using 4-methylcatechol and catechol were 12.57 kJ/mol and 14.23 kJ/mol from respective substrates. Sodium disulfite was a better inhibitor where 79.17% of PPO inhibition was achieved. The isolation and characterization of round brinjal PPO serves as a guideline to predict the behavior of enzyme, leading to effective prevention of its browning during processing and storage.
    Matched MeSH terms: Solanum melongena
  10. Nasehi A, Kadir JB, Abidin MAZ, Wong MY, Mahmodi F
    Plant Dis, 2012 Aug;96(8):1226.
    PMID: 30727083 DOI: 10.1094/PDIS-03-12-0237-PDN
    A leaf spot on eggplant (Solanum melongena) was observed in major eggplant growing regions in Malaysia, including the Cameron Highlands and Johor State, during 2011. Disease incidence averaged approximately 30% in severely infected regions in about 150 ha of eggplant fields and greenhouses examined. Early symptoms consisted of small, circular, brown, necrotic spots uniformly distributed on leaves. The spots gradually enlarged and developed concentric rings. Eventually, the spots coalesced and caused extensive leaf senescence. A fungus was recovered consistently by plating surface-sterilized (1% NaOCl) sections of symptomatic leaf tissue onto potato dextrose agar (PDA). For conidial production, the fungus was grown on potato carrot agar (PCA) and V8 agar media under a 16-h/8-h dark/light photoperiod at 25°C (4). Fungal colonies were a dark olive color with loose, cottony mycelium. Simple conidiophores were ≤120 μm long and produced numerous conidia in long chains. Conidia averaged 20.0 × 7.5 μm and contained two to five transverse septa and the occasional longitudinal septum. Twelve isolates of the fungus were identified as Alternaria tenuissima on the basis of morphological characterization (4). Confirmation of the species identification was obtained by molecular characterization of the internal transcribed spacer (ITS) region of rDNA amplified from DNA extracted from a representative isolate using universal primers ITS4 and ITS5 (2). The 558 bp DNA band amplified was sent for direct sequencing. The sequence (GenBank Accession No. JQ736021) was subjected to BLAST analysis (1) and was 99% identical to published ITS rDNA sequences of isolates of A. tenuissima (GenBank Accession Nos. DQ323692 and AY154712). Pathogenicity tests were performed by inoculating four detached leaves from 45-day-old plants of the eggplant cv. 125066x with 20 μl drops (three drops/leaf) of a conidial suspension containing 105 conidia/ml in sterile distilled water. Four control leaves were inoculated with sterile water. Leaves inoculated with the fungus and those treated with sterile water were incubated in chambers at 25°C and 95% RH with a 12-h photoperiod/day (2). Leaf spot symptoms typical of those caused by A. tenuissima developed on leaves inoculated with the fungus 7 days after inoculation, and the fungus was consistently reisolated from these leaves. The control leaves remained asymptomatic and the pathogen was not reisolated from the leaves. The pathogenicity test was repeated with similar results. To our knowledge, this is the first report of A. tenuissima causing a leaf spot on eggplant in Malaysia. A. tenuissima has been reported to cause leaf spot and fruit rot on eggplant in India (3). References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) B. M. Pryor and T. J. Michailides. Phytopathology 92:406, 2002. (3) P. Raja et al. New Disease Rep. 12:31, 2005. (4) E. G. Simmons. Page 1 in: Alternaria Biology, Plant Diseases and Metabolites. J. Chelchowski and A. Visconti, eds. Elsevier, Amsterdam, 1992.
    Matched MeSH terms: Solanum melongena
  11. Gupta N, Yadav KK, Kumar V, Krishnan S, Kumar S, Nejad ZD, et al.
    Environ Toxicol Pharmacol, 2021 Feb;82:103563.
    PMID: 33310081 DOI: 10.1016/j.etap.2020.103563
    This study determined the heavy metals (HMs) accumulation in different vegetables in different seasons and attributed a serious health hazard to human adults due to the consumption of such vegetables in Jhansi. The total amounts of zinc (Zn), lead (Pb), nickel (Ni), manganese (Mn), copper (Cu), cobalt (Co), and cadmium (Cd) were analysed in 28 composite samples of soil and vegetables (Fenugreek, spinach, eggplant, and chilli) collected from seven agricultural fields. The transfer factor (TF) of HMs from soil to analysed vegetables was calculated, and significant non-carcinogenic health risks due to exposure to analysed heavy metals via consumption of these vegetables were computed. The statistical analysis involving Principal Component Analysis (PCA) and Pearson's correlation matrix suggested that anthropogenic activities were a major source of HMs in the study areas. The target hazard quotient of Cd, Mn, and Pb for fenugreek (2.156, 2.143, and 2.228, respectively) and spinach (3.697, 3.509, 5.539, respectively) exceeded the unity, indicating the high possibilities of non-carcinogenic health risks if regularly consumed by human beings. This study strongly suggests the continuous monitoring of soil, irrigation water, and vegetables to prohibit excessive accumulation in the food chain.
    Matched MeSH terms: Solanum melongena
  12. Okuda S, Prince JP, Davis RE, Dally EL, Lee IM, Mogen B, et al.
    Plant Dis, 1997 Mar;81(3):301-305.
    PMID: 30861775 DOI: 10.1094/PDIS.1997.81.3.301
    Phytoplasmas (mycoplasmalike organisms, MLOs) associated with mitsuba (Japanese hone-wort) witches'-broom (JHW), garland chrysanthemum witches'-broom (GCW), eggplant dwarf (ED), tomato yellows (TY), marguerite yellows (MY), gentian witches'-broom (GW), and tsu-wabuki witches'-broom (TW) in Japan were investigated by polymerase chain reaction (PCR) amplification of DNA and restriction enzyme analysis of PCR products. The phytoplasmas could be separated into two groups, one containing strains JHW, GCW, ED, TY, and MY, and the other containing strains GW and TW, corresponding to two groups previously recognized on the basis of transmission by Macrosteles striifrons and Scleroracus flavopictus, respectively. The strains transmitted by M. striifrons were classified in 16S rRNA gene group 16SrI, which contains aster yellows and related phytoplasma strains. Strains GW and TW were classified in group 16SrIII, which contains phytoplasmas associated with peach X-disease, clover yellow edge, and related phytoplasmas. Digestion of amplified 16S rDNA with HpaII indicated that strains GW and TW were affiliated with subgroup 16SrIII-B, which contains clover yellow edge phytoplasma. All seven strains were distinguished from other phytoplasmas, including those associated with clover proliferation, ash yellows, elm yellows, and beet leafhopper-transmitted virescence in North America, and Malaysian periwinkle yellows and sweet potato witches'-broom in Asia.
    Matched MeSH terms: Solanum melongena
  13. Nurul Izzah, A., Wan Rozita, W.M., Siti Fatimah, D., Aminah, A., Md Pauzi, A., Lee, Y.H.
    MyJurnal
    A survey was conducted to investigate patterns of fruits and vegetables consumption among Malaysian adults residing in Selangor, Malaysia. Two hundred forty two subjects comprises of male (28%) and female (72%) of major ethnics (Malays-52.3%; Chinese-30.5%; Indians-16.9%) with the mean age of 43.5±18 years were studied from July to November 2002. Consumption data for vegetables were collected using 24 hours duplicate samples method while for fruits 24-hour diet record was used. The results showed that most frequently consumed leafy, leguminous, root, brassica and fruits vegetables were celery (Apium graveolens), spinach (Spinacia oleracea), water spinach (Ipomoea aquatic), long beans (Vigna sesquipedolis), French beans (Phaseolus vulgaris), carrot (Daucas carota), potato (Solanum tuberosum), Chinese mustard (Brassica juncea), round cabbage (Brassica reptans), cauliflower (Brassica oleracea var cauliflora), chilies (red, green, small or dried) (Capsicum sp.), tomato (Lycopersicum esculentum), cucumber (Cucumis sativus), long eggplant (Solanum melongena) and okra (Hibiscus esculentus). While most consumed ulam and traditional vegetables were petai (Parkia speciosa), sweet leaves (Sauropus andragynus) and Indian pennywor (Hydrocotyle asiatica). Other vegetables inclusive spices and flavorings that were preferred by subjects were shallot (Allium fistulosum), garlic(Allium sativum), onion (Alium cepa), green bean sprout (Phaseolus aureus) and curry leaves (Murraya koenigii). The most preferred fruits were banana (Musa spp.) and apples (.Malus domestica). A total consumption of fruits and vegetables among adults in Selangor was 173 g/day and the consumption among Malays (202 g/day) was significantly higher (P
    Matched MeSH terms: Solanum melongena
  14. Suzana Shahar, Kim, Tiu Teng, Nor Fadilah Rajab, Fatimah Arshad
    MyJurnal
    A preliminary study was conducted to determine the level of oxidative DNA damage, fruits and vegetables intake among 50 breast cancer patients (cases) as compared to 50 healthy women (controls) with no known medical history of breast cancer in Klang Valley. Both groups were matched for age and ethnicity. Data on socio-demographic, health status and medical history, fruits and vegetables intake, and supplements intake were obtained through an interviewbased questionnaire. Anthropometry measurements included weight, height, and waist and hip circumference were also carried out on subjects. A total of 3mL fasting venous blood was drawn to assess lymphocytes oxidative DNA damage using Alkaline Comet Assay. Results indicated that the mean intake of fruits and vegetables was lower in cases (4.09 ± 1.17 servings/d) than controls (4.77 ± 0.90 servings/d)(p < 0.05) The intake of fruits and vegetables from family groups of solanaceae, myrtaceae, caricaceae, apiaceae, brinjal, rutaceae, broccoli, orange, carrot, watermelon were 0.5 - 1 servings/week significantly higher among controls as compared to cases (p < 0.05 for all parameters). However, the intake of fruits from rosaceae family and apple was higher among controls than cases (p < 0.05). The estimated intake of ß-carotene, carotenoids, vitamin A, vitamin C (p < 0.001), a-carotene and lycopene (p < 0.05) from fruits and vegetables were higher among controls than cases. Mean DNA damage level of cases (4.55 ± 1.78 % DNA in tail, %TD; 0.35 ± 0.21 tail moment, TM) were 3.5 and 3.9 times higher than the value of controls (1.3 ± 0.70% TD; 0.09 ± 0.09 TM) (p < 0.001) and the damage increased with higher values of waist hip ratio (% TD, r = 0.396, p < 0.05; TM, r = 0.349, p < 0.05) and waist circumference (% TD, r = 0.334, p < 0.05; TM, r = 0.360, p < 0.05). There was an inverse relationship between oxidative DNA damage with intake of total fruits and vegetables, cauliflowers and water convolvulus and also consumption from rutaceae and solanaceae families. Similar trend was noted for estimated intake of vitamin A, carotenoids, vitamin C, ß-carotene and lycopene. In conclusion, the intake of fruits and vegetables of five servings/d and the consumption of specific families and types of fruits and vegetables might protect against oxidative DNA damage and further reduce breast cancer risk.
    Matched MeSH terms: Solanum melongena
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links