Oil palm is one of the most productive oil producing crops and can store up to 90% oil in its fruit mesocarp. However, the biosynthetic regulation and drivers of palm mesocarp development are still not well understood. Multiplatform metabolomics technology was used to profile palm metabolites during six critical stages of fruit development in order to better understand lipid biosynthesis. Significantly higher amino acid levels were observed in palm mesocarp preceding lipid biosynthesis. Nucleosides were found to be in high concentration during lipid biosynthesis, whereas levels of metabolites involved in the tricarboxylic acid cycle were more concentrated during early fruit development. Apart from insights into the regulation of metabolites during fruit development in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programs.
The purpose of this study was to evaluate the diagnostic value of qualitative and semi-quantitative assessment of ultrasound elastography in differentiating between benign and malignant breast lesions. This prospective study was conducted in two tertiary medical centers. Consecutive B-mode ultrasound and real-time elastographic images were obtained for 67 malignant and 101 benign breast lesions in 168 women. Four experienced radiologists analyzed B-mode ultrasound alone and B-mode ultrasound combined with elastography independently. Conventional ultrasound findings were classified according to the American College of Radiology Breast Imaging Reporting and Data System classification. The elastographic assessment was based on qualitative and semi-quantitative parameters (i.e., strain pattern, width ratio, strain ratio). The sensitivity and specificity of combined elastography and conventional ultrasound were significantly higher than that of conventional ultrasound alone. The sensitivity, specificity, positive predictive value and negative predictive value was 97%, 61.4%, 62.5% and 96.8%, respectively, for conventional ultrasound and 100%, 93%, 99% and 90%, respectively, for combined technique. The semi-quantitative assessment with strain ratio and width ratio in elastography were the most useful parameters in differentiating between benign and malignant breast lesions. Cut-off point values for width ratio of more than 1.1 and strain ratio of more than 5.6 showed a high predictive value of malignancy with specificities of 84% and 76%, respectively (p
MeSH terms: Adolescent; Adult; Aged; Algorithms*; Breast Neoplasms/classification; Breast Neoplasms/ultrasonography*; Diagnosis, Differential; Female; Humans; Image Enhancement/methods; Image Interpretation, Computer-Assisted/methods*; Mammography/methods*; Middle Aged; Pattern Recognition, Automated/methods*; Sensitivity and Specificity; Reproducibility of Results; Observer Variation; Elasticity Imaging Techniques/methods*; Young Adult
The optical properties of a ZnO photocatalyst were enhanced with various dopant concentrations of Fe(3+). Doped ZnO nanoparticles were synthesized via a sol-gel method without the use of capping agents or surfactants and was then characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet-visible (UV-Vis) spectroscopy. The results showed that ZnO has a wurtzite, hexagonal structure and that the Fe(3+) ions were well incorporated into the ZnO crystal lattice. As the Fe(3+) concentration increased from 0.25 wt.% to 1 wt.%, the crystal size decreased in comparison with the undoped ZnO. The spectral absorption shifts of the visible light region (red shift) and the band gap decreases for each Fe-ZnO sample were investigated. The photocatalytic activities of the ZnO and Fe-ZnO samples were evaluated based on the degradation of 2-chlorophenol in aqueous solution under solar radiation. The samples with a small concentration of Fe(3+) ions showed enhanced photocatalytic activity with an optimal maximum performance at 0.5 wt.%. The results indicated that toxicity removal of 2-chlorophenol at same line of degradation efficiency. Small crystallite size and low band gap were attributed to high activities of Fe-ZnO samples under various concentrations of Fe(3+) ions compared to undoped ZnO.
The fate of nine veterinary antibiotics and one hormone in broiler manure during 40 days of composting was investigated. Results showed that composting can significantly reduce the concentration of veterinary antibiotics and hormone in broiler manure, making application of the post-compost manure safer for soil application. More than 99% of the nine antibiotics and one hormone involved in this study were removed from the manure during 40 days of composting. The target antibiotics and hormone showed short half-life in broiler manure composting, ranging from 1.3 to 3.8 days. The relationship between the physico-chemical properties of soil, manure and manure compost and its veterinary antibiotic and hormone concentration was statistically evaluated by Pearson correlation matrix. The concentration of veterinary antibiotics and hormone in manure compost was suggested to be affected by physico-chemical properties such as pH, temperature, total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP) and metal contents.
Mitragyna speciosa, a native plant of Thailand and Malaysia known as 'ketum', is a plant of considerable interest. It exhibits strong antinociceptive effect and yet, acts like a psychostimulant. Due to the affordability and its ease of availability, the abuse of this plant as a substitute for other banned narcotics has become a major concern in many societies. In countries such as Thailand, Myanmar, Australia and Malaysia, the use of ketum is illegal. However, for a person to be charged for possessing or selling ketum, a reliable analytical method is needed in order to detect and identify the plant and its products. Mitragynine is the major alkaloid of ketum. This compound manifests its antinociceptive effects by acting on the opioid receptors. Since M. speciosa contain large quantity of mitragynine and it is exclusive to the species, the present analytical method is developed and validated for the purpose of screening ketum products based on this unique compound as the analytical marker. The method uses a HPLC-DAD system with Inertsil C8 (4.6 mm × 150 mm, 5 μm) as the column and a mixture of acetonitrile and formic acid, 50:50 (v/v), as the mobile phase. This method not only detects mitragynine, it can also be used to quantify the amount of mitragynine in the sample. The limit of detection is 0.25 μg/ml, while the limit of quantification is 0.50 μg/ml. The method is quick, simple and reliable with an accuracy of 97.27-101.74% and coefficient of variations of between 0.91 and 3.96%. The method has been tested and found suitable for the identification and quantification of mitragynine in dried plants, a variety of ketum extracts, as well as ketum drink obtained from the market.
Staphylococcus aureus has become a serious concern in hospitals and community due to rapid adaptation to existing antimicrobial agents. Betulinaldehyde [3β-hydroxy-20(29)-lupen-28-al (BE)] belongs to pentacyclic triterpenoids that are based on a 30-carbon skeleton comprising four six-membered rings and one five-membered ring. In a preliminary study, BE exhibited antimicrobial activity against reference strains of methicillin-resistant and methicillin-sensitive S. aureus. However, the response mechanism of S. aureus to this compound is not known. In this study, the global gene expression patterns of both the reference strains in response to sub-inhibitory concentrations of BE were analyzed using DNA microarray to identify gene targets, particularly essential targets in novel pathways, i.e. not targeted by currently used antibiotics, or novel targets in existing pathways. The transcriptome analysis revealed repression of genes in the aminoacyl-tRNA synthetase and ribosome pathways in both the reference strains. Other pathways such as cell division, two-component systems, ABC transporters, fatty acid biosynthesis and peptidoglycan biosynthesis were affected only in the reference strain of methicillin-resistant S. aureus. The findings suggest that BE regulates multiple desirable targets which could be further explored in the development of therapeutic agents for the treatment of S. aureus infections.
Phyllodes tumour or cystosarcoma phyllodes is a rare stromal breast tumour that is usually benign but on rare occasions can turn malignant. Non-specificity of the imaging features on sonography and mammography makes it difficult to distinguish malignant from benign counterparts solely based on imaging. The final diagnosis is still highly dependent on histopathological assessment. Herein, we describe two cases of malignant phyllodes tumour with emphasis on magnetic resonance (MR) imaging features using advanced MR applications.
MeSH terms: Adult; Breast Neoplasms/pathology*; Phyllodes Tumor/pathology*; Female; Humans; Magnetic Resonance Imaging/methods*; Middle Aged
Traumatic brain injury (TBI) causes significant mortality in most developing countries worldwide. At present, it is imperative to identify a treatment to address the devastating post-TBI consequences. Therefore, the present study has been performed to assess the specific effect of immediate exposure to normabaric hyperoxia (NBO) after fluid percussion injury (FPI) in the striatum of mice. To execute FPI, mice were anesthetised and sorted into (i) a TBI group, (ii) a sham group without injury and (iii) a TBI group treated with immediate exposure to NBO for 3 h. Afterwards, brains were harvested for morphological assessment. The results revealed no changes in morphological and neuronal damage in the sham group as compared to the TBI group. Conversely, the TBI group showed severe morphological changes as well as neuronal damage as compared to the TBI group exposed to NBO for 3 h. Interestingly, our findings also suggested that NBO treatment could diminish the neuronal damage in the striatum of mice after FPI. Neuronal damage was evaluated at different points of injury and the neighbouring areas using morphology, neuronal apoptotic cell death and pan-neuronal markers to determine the complete neuronal structure. In conclusion, immediate exposure to NBO following FPI could be a potential therapeutic approach to reduce neuronal damage in the TBI model.
A highly stable tunable dual-wavelength fiber laser (TDWFL) using graphene as a means to generate a highly stable output is proposed and generated. The TDWFL comprises a 1 m long, highly doped erbium-doped fiber (EDF) acting as the linear gain medium, with a 24-channel arrayed waveguide grating acting as a wavelength slicer as well as a tuning mechanism to generate different wavelength pairs. The tuned wavelength pairs can range from 0.8 to 18.2 nm. A few layers of graphene are incorporated into the laser cavity to induce the four-wave-mixing effect, which stabilizes the dual-wavelength output by suppressing the mode competition that arises as a result of homogenous broadening in the EDF.
Fatty acid esters are long-chain esters, produced from the reaction of fatty acids and alcohols. They possess potential applications in cosmetic and pharmaceutical formulations due to their excellent wetting behaviour at interfaces and a non-greasy feeling when applied on the skin surfaces. This preliminary work was carried out to construct pseudo-ternary phase diagrams for oleyl laurate, oleyl stearate and oleyl oleate with surfactants and piroxicam. Then, the preparation and optimization study via 'One-At-A-Time Approach' were carried out to determine the optimum amount of oil, surfactants and stabilizer using low-energy emulsification method. The results revealed that multi-phase region dominated the three pseudo-ternary phase diagrams. A composition was chosen from each multi-phase region for preparing the nanoemulsions systems containing piroxicam by incorporating a hydrocolloid stabilizer. The results showed that the optimum amount (w/w) of oil for oleyl laurate nanoemulsions was 30 and 20 g (w/w) for oleyl stearate nanoemulsions and oleyl oleate nanoemulsions. For each nanoemulsions system, the amount of mixed surfactants and stabilizer needed for the emulsification to take place was found to be 10 and 0.5 g (w/w), respectively. The emulsification process via high-energy emulsification method successfully produced nano-sized range particles. The nanoemulsions systems passed the centrifugation test and freeze-thaw cycle with no phase failures, and stable for 3 months at various storage temperatures (3°C, 25°C and 45°C). The results proved that the prepared nanoemulsions system cannot be formed spontaneously, and thus, energy input was required to produce nano-sized range particles.
In this study, a simple and reliable reverse-phase high-performance liquid chromatography (RP-HPLC) method was established and validated to analyze S-mephenytoin 4-hydroxylase activity of a recombinant CYP2C19 system. This system was obtained by co-expressing CYP2C19 and NADPH-CYP oxidoreductase (OxR) proteins in Escherichia coli (E. coli) cells. In addition to RP-HPLC, the expressed proteins were evaluated by immunoblotting and reduced CO difference spectral scanning. The RP-HPLC assay showed good linearity (r(2) = 1.00) with 4-hydroxymephenytoin concentration from 0.100 to 50.0 μm and the limit of detection was 5.00 × 10(-2) μm. Intraday and interday precisions determined were from 1.90 to 8.19% and from 2.20 to 14.9%, respectively. Recovery and accuracy of the assay were from 83.5 to 85.8% and from 95.0 to 105%. Enzyme kinetic parameters (Km , Vmax and Ki ) were comparable to reported values. The presence of CYP2C19 in bacterial membranes was confirmed by immunoblotting and the characteristic absorbance peak at 450 nm was determined in the reduced CO difference spectral assay. Moreover, the activity level of co-expressed OxR was found to be comparable to that of the literature. As a conclusion, the procedures described here have generated catalytically active CYP2C19 and the RP-HPLC assay developed is able to serve as CYP2C19 activity marker for pharmacokinetic drug interaction study in vitro.
The genus Burkholderia consists of diverse species which includes both "friends" and "foes." Some of the "friendly" Burkholderia spp. are extensively used in the biotechnological and agricultural industry for bioremediation and biocontrol. However, several members of the genus including B. pseudomallei, B. mallei, and B. cepacia, are known to cause fatal disease in both humans and animals. B. pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively, while B. cepacia infection is lethal to cystic fibrosis (CF) patients. Due to the high rate of infectivity and intrinsic resistance to many commonly used antibiotics, together with high mortality rate, B. mallei and B. pseudomallei are considered to be potential biological warfare agents. Treatments of the infections caused by these bacteria are often unsuccessful with frequent relapse of the infection. Thus, we are at a crucial stage of the need for Burkholderia vaccines. Although the search for a prophylactic therapy candidate continues, to date development of vaccines has not advanced beyond research to human clinical trials. In this article, we review the current research on development of safe vaccines with high efficacy against B. pseudomallei, B. mallei, and B. cepacia. It can be concluded that further research will enable elucidation of the potential benefits and risks of Burkholderia vaccines.
The combination of two silent mutations, c.1311C>T in exon 11 and IVS11 T93C (glucose-6-phosphate dehydrogenase (G6PD) 1311T/93C), with unknown mechanism, have been reported in G6PD-deficient individuals in Asian populations including Malaysian aboriginal group, Negrito. Here, we report the screening of G6PD gene in 103 Negrito volunteers using denaturing high-performance liquid chromatography (dHPLC) and direct sequencing. A total of 48 individuals (46.6%) were G6PD deficient, 83.3% of these carried G6PD 1311T/93C with enzyme activity ranging from 1.8 to 4.8 U gHb(-1). Three novel single-nucleotide polymorphisms (SNPs), rs112950723, rs111485003 and rs1050757, were found in the G6PD 3'-untranslated region (UTR). Strong association was observed between haplotype 1311T/93C and rs1050757G, which is located inside the 35 bp AG-rich region. In silico analysis revealed that the transition of A to G at position rs1050757 makes significant changes in the G6PD mRNA secondary structure. Moreover, putative micro (mi)RNA target sites were identified in 3'-UTR of G6PD gene, two of these in the region encompassing rs1050757. It could be speculated that rs1050757 have a potential functional effect on the downregulation of mRNA and consequently G6PD deficiency either by affecting mRNA stability and translation or mirRNA regulation process. This is the first report of biochemical association of an SNP in 3'-UTR of G6PD gene and the possible role of mRNA secondary structure.
MeSH terms: Base Sequence; Female; Genotype; Glucosephosphate Dehydrogenase/genetics*; Glucosephosphate Dehydrogenase Deficiency/genetics*; Humans; Male; Molecular Sequence Data; Nucleic Acid Conformation; Genetic Variation*; 3' Untranslated Regions*; Polymorphism, Single Nucleotide; Asian Continental Ancestry Group
Dysregulated metabolism is implicated in obesity and other disease conditions like type 2 diabetes mellitus and cardiovascular diseases, which are linked to abnormalities of peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ has been the focus of much research aimed at managing these diseases. Also, germinated brown rice (GBR) is known to possess antidiabetic, antiobesity and hypocholesterolemic effects. We hypothesized that GBR bioactive compounds may mediate some of the improvements in metabolic indices through PPARγ modulation. Cultured HEP-G2 cells were treated with 50 ppm and 100 ppm of extracts from GBR (GABA, ASG and oryzanol) after determination of cell viabilities using MTT assays. Results showed that all extracts upregulated the expression of the PPARγ. However, combination of all three extracts showed downregulation of the gene, suggesting that, in combination, the effects of these bioactives differ from their individual effects likely mediated through competitive inhibition of the gene. Upregulation of the gene may have therapeutic potential in diabetes mellitus and cardiovascular diseases, while its downregulation likely contributes to GBR's antiobesity effects. These potentials are worth studying further.
In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW) device is investigated through finite element method (FEM) simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher) than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.
We evaluated an epilepsy education programme based on text messaging (SMS). Epilepsy outpatients from three hospitals in Malaysia were randomised into two groups: intervention and control. Patients in the control group were supplied with printed epilepsy educational material while those in the intervention group also received text messages from the Mobile Epilepsy Educational System (MEES). A total of 136 patients completed the study (mean age 31 years; 91% Malay; 51% with an illness duration of more than 5 years). A between-group analysis showed that the awareness, knowledge and attitudes (AKA) about epilepsy did not significantly differ between the groups at baseline (P > 0.05). The intervention patients reported better AKA levels during follow-up compared to the control patients (P < 0.05). A within-group analysis showed that in intervention patients, there were significant improvements in all AKA domains with larger effect sizes (P < 0.01) while control patients also exhibited significant improvement in most domains except for Awareness but with smaller effect sizes. After controlling for possible confounding variables (age, gender, educational qualification, monthly income and baseline mean for each domain), the intervention group still reported significantly higher AKA than the control group particularly in Awareness (P < 0.001) and Total AKA (P = 0.003). There was also significantly better medication adherence and clinic attendance in the intervention group (P < 0.05). The results suggest that the addition of the MEES to conventional epilepsy education is effective in improving AKA.
Study site: Neurology clinics, public hospitals, Terengganu, Pahang, Kelantan, Malaysia
MeSH terms: Adult; Analysis of Variance; Awareness; Epilepsy*; Female; Hospitals, General; Humans; Health Knowledge, Attitudes, Practice; Malaysia; Male; Outpatient Clinics, Hospital; Patient Education as Topic/methods*; Program Evaluation; Health Behavior; Telemedicine/methods*; Medication Adherence; Text Messaging*
This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P
Since the first successful synthesis of Ag(I)-N-heterocyclic carbene complex in 1993, this class of compounds has been extensively used for transmetallation reactions where the direct synthesis using other metal ions was either difficult or impossible. Initially, silver(I)-NHC complexes were tested for their catalytic potential but could not get fame because of lower potential compare to other competent compounds in this field; however, these compounds proved to have vital antimicrobial activities. These encouraging biomedical applications further convinced researchers to test these compounds against cancer. The current work has been carried out with this aim.
Calreticulin (CRT) as a multi-functional endoplasmic reticulum protein is involved in a spectrum of cellular processes which ranges from calcium homeostasis and chaperoning to cell adhesion and finally malignant formation and progression. Previous studies have shown a contributing role for CRT in a range of different cancers. This present review will focus on the possible roles of CRT in the progression of malignant proliferation and the mechanisms involved in its contribution to cancer invasion.