Browse publications by year: 2014

  1. Haress NG, Ghabbour HA, El-Emam AA, Chidan Kumar CS, Fun HK
    Acta Crystallogr Sect E Struct Rep Online, 2014 Jul 01;70(Pt 7):o768-9.
    PMID: 25161558 DOI: 10.1107/S1600536814013269
    In the title pyrimidine-2,4-dione derivative, C14H16N2O2S, the dihedral angle between the six-membered rings is 77.81 (10)°. The mol-ecule is twisted about the Cp-S (p = pyrimidine) bond, with a C-S-C-N torsion angle of -59.01 (17)°. An intramolecular C-H⋯S hydrogen bond generates an S(5) ring motif. In the crystal, bifurcated acceptor N-H⋯O and C-H⋯O hydrogen bonds generate inversion-related dimers incorporating R 2 (1)(9) and R 2 (2)(8) loops. These dimers are connected into a chain extending along the a-axis direction by a second pair of inversion-related N-H⋯O hydrogen bonds, forming another R 2 (2)(8) loop. The crystal structure is further stabilized by weak inter-molecular C-H⋯π inter-actions, generating a three-dimensional network.
  2. Burrett S, Taylor DK, Tiekink ER
    Acta Crystallogr Sect E Struct Rep Online, 2014 Jul 1;70(Pt 7):o776-7.
    PMID: 25161564 DOI: 10.1107/S1600536814013543
    Four independent mol-ecules (A-D) comprise the asymmetric unit of the title compound, C15H26O2, which differ only in the relative orientations of the terminal -C(Me)2OH groups [e.g. the range of Cmethyl-ene-Cmethine-Cquaternary-Ohy-droxy torsion angles is 52.7 (7)-57.1 (6)°, where the Cmethyl-ene atom is bound to an epoxide C atom]. The five-membered rings adopt envelope conformations, with the methyl-ene C atom adjacent to the methine C atom being the flap atom in each case. In each mol-ecule, the conformation of the seven-membered ring is a half-chair, with the Cmethyl-ene-Cmethine bond, flanked by methyl-ene C atoms, being the back of the chair. Supra-molecular helical chains along the b axis are found in the crystal packing, sustained by hy-droxy-epoxide O-H⋯O hydrogen bonding. Mol-ecules of A self-associate into a chain as do those of D. A third independent chain comprising B and C mol-ecules is also formed. The studied crystal is a pseudo-merohedral twin (minor component ca 21%).
  3. Purushothaman M, Thanigaimani K, Arshad S, Silambarasan S, Razak IA, Ali KM
    Acta Crystallogr Sect E Struct Rep Online, 2014 Jul 1;70(Pt 7):o812-3.
    PMID: 25161592 DOI: 10.1107/S1600536814014354
    In the title compound, C14H12ClN5, the di-hydro-pyridine ring adopts a shallow boat conformation. The dihedral angle between the plane of this ring and that of the chloro-benzene ring is 69.15 (15)°. In the crystal, mol-ecules are linked by N-H⋯N and N-H⋯Cl hydrogen bonds, generating (001) sheets.
  4. Tiong WH, Basiron NH
    Case Rep Med, 2014;2014:942078.
    PMID: 25161670 DOI: 10.1155/2014/942078
    Reverse abdominoplasty was originally described for epigastric lift. Since the work by Baroudi and Huger in the 1970s, it has become clear that reverse abdominoplasty application can be extended beyond just aesthetic procedure. Through the knowledge of anterior abdominal wall vascularity, its application had included reconstructive prospect in the coverage of various chest wall defects. To date, reverse abdominoplasty flap has been used to reconstruct unilateral anterior chest wall defect or for larger defect but only in combination with other reconstructive techniques. Here, we presented a case where it is used as a standalone flap to reconstruct bilateral anterior chest wall soft tissue defect post-bilateral mastectomies in oncological resection. In conclusion, reverse abdominoplasty flap provided us with a simple, faster, and satisfactory reconstructive outcome.
    MeSH terms: Esthetics; Mastectomy; Surgical Flaps; Abdominal Wall; Thoracic Wall; Abdominoplasty
  5. Giribabu N, Srinivasarao N, Swapna Rekha S, Muniandy S, Salleh N
    PMID: 25161691 DOI: 10.1155/2014/592062
    Diabetes mellitus has been reported to affect functions of the hippocampus. We hypothesized that Centella asiatica, a herb traditionally being used to improve memory, prevents diabetes-related hippocampal dysfunction. Therefore, the aim of this study was to investigate the protective role of C. asiatica on the hippocampus in diabetes. Methods. Streptozotocin- (STZ-) induced adult male diabetic rats received 100 and 200 mg/kg/day body weight (b.w) C. asiatica leaf aqueous extract for four consecutive weeks. Following sacrifice, hippocampus was removed and hippocampal tissue homogenates were analyzed for Na(+)/K(+)-, Ca(2+)- and Mg(2+)-ATPases activity levels. Levels of the markers of inflammation (tumor necrosis factor, TNF-α; interleukin, IL-6; and interleukin, IL-1β) and oxidative stress (lipid peroxidation product: LPO, superoxide dismutase: SOD, catalase: CAT, and glutathione peroxidase: GPx) were determined. The hippocampal sections were visualized for histopathological changes. Results. Administration of C. asiatica leaf aqueous extract to diabetic rats maintained near normal ATPases activity levels and prevents the increase in the levels of inflammatory and oxidative stress markers in the hippocampus. Lesser signs of histopathological changes were observed in the hippocampus of C. asiatica leaf aqueous extract treated diabetic rats. Conclusions. C. asiatica leaf protects the hippocampus against diabetes-induced dysfunction which could help to preserve memory in this condition.
    MeSH terms: Adenosine Triphosphatases; Animals; Catalase; Diabetes Mellitus, Experimental; Glutathione Peroxidase; Hippocampus; Male; Streptozocin; Triterpenes; Tumor Necrosis Factor-alpha; Lipid Peroxidation; Interleukin-6; Oxidative Stress; Centella; Rats; Interleukin-1beta
  6. Kristmundsson A, Freeman MA
    Int J Parasitol Parasites Wildl, 2014 Aug;3(2):135-46.
    PMID: 25161912 DOI: 10.1016/j.ijppaw.2014.06.001
    In the early 2000s, experimental rearing of spotted wolffish, Anarhichas minor, was started in Iceland. Health surveillance, carried out at regular intervals during the rearing period, revealed persistent and highly prevalent Kudoa infections of fish muscles which caused great financial losses due to post mortem myoliquefaction. In addition, during the traditional process of drying and smoking wild Atlantic lumpfish, Cyclopterus lumpus, the muscles from some fish almost completely disappear and the fish have to be discarded. To describe the etiological agent responsible for these conditions, spotted wolffish, Atlantic wolffish Anarhichas lupus, northern wolffish Anarhichas denticulatus and Atlantic lumpfish were caught off the Icelandic coast and examined for the presence of Kudoa. We describe a novel myxosporean, Kudoa islandica n. sp., using morphological and molecular data, and show with histopathology that it causes extensive myoliquefaction in three different wild fish hosts, which all are commercially valuable species in Iceland. Although some spore dimensions varied significantly between fish species, the molecular analyses showed that the same parasite was responsible for infection in all fish. The northern wolffish was not found to be infected. Although robustly placed in the Kudoa clade in phylogenetic analyses, K. islandica was phylogenetically distinct from other kudoids. A single myxosporean, K. islandica, is responsible for the infections in the somatic muscles of lumpfish and wolffish, causing extensive post mortem myoliquefaction. This myxosporean is likely to infect other fish species and it is important to study its life cycle in order to evaluate any threat to salmonid culture via the use of lumpfish as a biocontrol for sea lice.
    MeSH terms: Animals; Iceland; Parasites; Perciformes; Phylogeny; Salmonidae; Smoking; Spores; Copepoda; Myxozoa
  7. Abedin MJ, Masjuki HH, Kalam MA, Varman M, Arbab MI, Fattah IM, et al.
    ScientificWorldJournal, 2014;2014:349858.
    PMID: 25162046 DOI: 10.1155/2014/349858
    This paper deals with the performance and emission analysis of a multicylinder diesel engine using biodiesel along with an in-depth analysis of the engine heat losses in different subsystems followed by the energy balance of all the energy flows from the engine. Energy balance analysis allows the designer to appraise the internal energy variations of a thermodynamic system as a function of ''energy flows" across the control volume as work or heat and also the enthalpies associated with the energy flows which are passing through these boundaries. Palm and coconut are the two most potential biodiesel feed stocks in this part of the world. The investigation was conducted in a four-cylinder diesel engine fuelled with 10% and 20% blends of palm and coconut biodiesels and compared with B5 at full load condition and in the speed range of 1000 to 4000 RPM. Among the all tested blends, palm blends seemed more promising in terms of engine performance, emission, and heat losses. The influence of heat losses on engine performance and emission has been discussed thoroughly in this paper.
    MeSH terms: Vehicle Emissions/analysis*; Gasoline*; Malaysia; Temperature; Biofuels*
  8. Mumtaz MW, Mukhtar H, Anwar F, Saari N
    ScientificWorldJournal, 2014;2014:526105.
    PMID: 25162053 DOI: 10.1155/2014/526105
    Current study presents RSM based optimized production of biodiesel from palm oil using chemical and enzymatic transesterification. The emission behavior of biodiesel and its blends, namely, POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 was examined using diesel engine (equipped with tube well). Optimized palm oil fatty acid methyl esters (POFAMEs) yields were depicted to be 47.6 ± 1.5, 92.7 ± 2.5, and 95.4 ± 2.0% for chemical transesterification catalyzed by NaOH, KOH, and NaOCH3, respectively, whereas for enzymatic transesterification reactions catalyzed by NOVOZYME-435 and A. n. lipase optimized biodiesel yields were 94.2 ± 3.1 and 62.8 ± 2.4%, respectively. Distinct decrease in particulate matter (PM) and carbon monoxide (CO) levels was experienced in exhaust emissions from engine operating on biodiesel blends POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 comparative to conventional petroleum diesel. Percentage change in CO and PM emissions for different biodiesel blends ranged from -2.1 to -68.7% and -6.2 to -58.4%, respectively, relative to conventional diesel, whereas an irregular trend was observed for NOx emissions. Only POB-5 and POB-20 showed notable reductions, whereas all other blends (POB-40 to POB-100) showed slight increase in NOx emission levels from 2.6 to 5.5% comparative to petroleum diesel.
    MeSH terms: Vehicle Emissions/analysis*; Chromatography, Gas; Environmental Monitoring; Esterification; Plant Oils/chemistry*; Spectroscopy, Fourier Transform Infrared; Particulate Matter/analysis; Biofuels*; Renewable Energy
  9. Lee LH, Zainal N, Azman AS, Eng SK, Goh BH, Yin WF, et al.
    ScientificWorldJournal, 2014;2014:698178.
    PMID: 25162061 DOI: 10.1155/2014/698178
    The aim of this study was to isolate and identify Actinobacteria from Malaysia mangrove forest and screen them for production of antimicrobial secondary metabolites. Eighty-seven isolates were isolated from soil samples collected at 4 different sites. This is the first report to describe the isolation of Streptomyces, Mycobacterium, Leifsonia, Microbacterium, Sinomonas, Nocardia, Terrabacter, Streptacidiphilus, Micromonospora, Gordonia, and Nocardioides from mangrove in east coast of Malaysia. Of 87 isolates, at least 5 isolates are considered as putative novel taxa. Nine Streptomyces sp. isolates were producing potent antimicrobial secondary metabolites, indicating that Streptomyces isolates are providing high quality metabolites for drug discovery purposes. The discovery of a novel species, Streptomyces pluripotens sp. nov. MUSC 135(T) that produced potent secondary metabolites inhibiting the growth of MRSA, had provided promising metabolites for drug discovery research. The biosynthetic potential of 87 isolates was investigated by the detection of polyketide synthetase (PKS) and nonribosomal polyketide synthetase (NRPS) genes, the hallmarks of secondary metabolites production. Results showed that many isolates were positive for PKS-I (19.5%), PKS-II (42.5%), and NRPS (5.7%) genes, indicating that mangrove Actinobacteria have significant biosynthetic potential. Our results highlighted that mangrove environment represented a rich reservoir for isolation of Actinobacteria, which are potential sources for discovery of antimicrobial secondary metabolites.
    MeSH terms: Anti-Infective Agents/isolation & purification; Anti-Infective Agents/pharmacology*; Bacteria/drug effects; Malaysia; Microbial Sensitivity Tests; Phylogeny; Geologic Sediments/microbiology*; Actinobacteria/classification; Actinobacteria/isolation & purification; Actinobacteria/metabolism*; Biodiversity*; Wetlands*; Drug Discovery
  10. Laurance WF, Clements GR, Sloan S, O'Connell CS, Mueller ND, Goosem M, et al.
    Nature, 2014 Sep 11;513(7517):229-32.
    PMID: 25162528 DOI: 10.1038/nature13717
    The number and extent of roads will expand dramatically this century. Globally, at least 25 million kilometres of new roads are anticipated by 2050; a 60% increase in the total length of roads over that in 2010. Nine-tenths of all road construction is expected to occur in developing nations, including many regions that sustain exceptional biodiversity and vital ecosystem services. Roads penetrating into wilderness or frontier areas are a major proximate driver of habitat loss and fragmentation, wildfires, overhunting and other environmental degradation, often with irreversible impacts on ecosystems. Unfortunately, much road proliferation is chaotic or poorly planned, and the rate of expansion is so great that it often overwhelms the capacity of environmental planners and managers. Here we present a global scheme for prioritizing road building. This large-scale zoning plan seeks to limit the environmental costs of road expansion while maximizing its benefits for human development, by helping to increase agricultural production, which is an urgent priority given that global food demand could double by mid-century. Our analysis identifies areas with high environmental values where future road building should be avoided if possible, areas where strategic road improvements could promote agricultural development with relatively modest environmental costs, and 'conflict areas' where road building could have sizeable benefits for agriculture but with serious environmental damage. Our plan provides a template for proactively zoning and prioritizing roads during the most explosive era of road expansion in human history.
    MeSH terms: Animals; Conservation of Natural Resources*; Geography; International Cooperation; Models, Theoretical; Biodiversity; Environmental Policy*
  11. Abdul Halim NS, Fakiruddin KS, Ali SA, Yahaya BH
    Int J Mol Sci, 2014;15(9):15044-60.
    PMID: 25162825 DOI: 10.3390/ijms150915044
    Mesenchymal stem cells (MSCs) hold tremendous potential for therapeutic use in stem cell-based gene therapy. Ex vivo genetic modification of MSCs with beneficial genes of interest is a prerequisite for successful use of stem cell-based therapeutic applications. However, genetic manipulation of MSCs is challenging because they are resistant to commonly used methods to introduce exogenous DNA or RNA. Herein we compared the effectiveness of several techniques (classic calcium phosphate precipitation, cationic polymer, and standard electroporation) with that of microporation technology to introduce the plasmid encoding for angiopoietin-1 (ANGPT-1) and enhanced green fluorescent protein (eGFP) into human adipose-derived MSCs (hAD-MSCs). The microporation technique had a higher transfection efficiency, with up to 50% of the viable hAD-MSCs being transfected, compared to the other transfection techniques, for which less than 1% of cells were positive for eGFP expression following transfection. The capability of cells to proliferate and differentiate into three major lineages (chondrocytes, adipocytes, and osteocytes) was found to be independent of the technique used for transfection. These results show that the microporation technique is superior to the others in terms of its ability to transfect hAD-MSCs without affecting their proliferation and differentiation capabilities. Therefore, this study provides a foundation for the selection of techniques when using ex vivo gene manipulation for cell-based gene therapy with MSCs as the vehicle for gene delivery.
    MeSH terms: Adipose Tissue/cytology; Cell Differentiation; Cell Line; Humans; Electroporation/methods*; Angiopoietin-1/genetics; Angiopoietin-1/metabolism; Cell Proliferation; Green Fluorescent Proteins/genetics; Green Fluorescent Proteins/metabolism; Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/metabolism*; Mesenchymal Stromal Cells/physiology
  12. Yusuf S, Rangarajan S, Teo K, Islam S, Li W, Liu L, et al.
    N Engl J Med, 2014 08 28;371(9):818-27.
    PMID: 25162888 DOI: 10.1056/NEJMoa1311890
    BACKGROUND: More than 80% of deaths from cardiovascular disease are estimated to occur in low-income and middle-income countries, but the reasons are unknown.
    METHODS: We enrolled 156,424 persons from 628 urban and rural communities in 17 countries (3 high-income, 10 middle-income, and 4 low-income countries) and assessed their cardiovascular risk using the INTERHEART Risk Score, a validated score for quantifying risk-factor burden without the use of laboratory testing (with higher scores indicating greater risk-factor burden). Participants were followed for incident cardiovascular disease and death for a mean of 4.1 years.
    RESULTS: The mean INTERHEART Risk Score was highest in high-income countries, intermediate in middle-income countries, and lowest in low-income countries (P<0.001). However, the rates of major cardiovascular events (death from cardiovascular causes, myocardial infarction, stroke, or heart failure) were lower in high-income countries than in middle- and low-income countries (3.99 events per 1000 person-years vs. 5.38 and 6.43 events per 1000 person-years, respectively; P<0.001). Case fatality rates were also lowest in high-income countries (6.5%, 15.9%, and 17.3% in high-, middle-, and low-income countries, respectively; P=0.01). Urban communities had a higher risk-factor burden than rural communities but lower rates of cardiovascular events (4.83 vs. 6.25 events per 1000 person-years, P<0.001) and case fatality rates (13.52% vs. 17.25%, P<0.001). The use of preventive medications and revascularization procedures was significantly more common in high-income countries than in middle- or low-income countries (P<0.001).
    CONCLUSIONS: Although the risk-factor burden was lowest in low-income countries, the rates of major cardiovascular disease and death were substantially higher in low-income countries than in high-income countries. The high burden of risk factors in high-income countries may have been mitigated by better control of risk factors and more frequent use of proven pharmacologic therapies and revascularization. (Funded by the Population Health Research Institute and others.).
    Note: Malaysia is a study site (Author: Yusoff K)
    MeSH terms: Cardiovascular Diseases/mortality*; Cardiovascular Diseases/epidemiology; Female; Humans; Income*; Male; Middle Aged; Risk Factors; Rural Health; Urban Health; Global Health; Risk Assessment
  13. Ameli F, Ghafourian F, Masir N
    J Med Case Rep, 2014;8:288.
    PMID: 25163591 DOI: 10.1186/1752-1947-8-288
    Systemic Epstein-Barr virus-positive T-cell lymphoproliferative childhood disease is an extremely rare disorder and classically arises following primary acute or chronic active Epstein-Barr virus infection. It is characterized by clonal proliferation of Epstein-Barr virus-infected T-cells with an activated cytotoxic phenotype. This disease has a rapid clinical course and is more frequent in Asia and South America, with relatively few cases being reported in Western countries. The clinical and pathological features of the disease overlap with other conditions including infectious mononucleosis, chronic active Epstein-Barr virus infection, hemophagocytic lymphohistiocytosis and natural killer cell malignancies. We describe the rare case of systemic Epstein-Barr virus-positive T-cell lymphoproliferative childhood disease in a 16-year-old Malay boy.
    MeSH terms: Adolescent; Biopsy; Cough/etiology*; Cough/virology; Diagnosis, Differential; Fever/etiology*; Fever/virology; Humans; Lymphoproliferative Disorders/complications*; Lymphoproliferative Disorders/diagnosis*; Lymphoproliferative Disorders/virology; Male; Multiple Organ Failure/etiology; Multiple Organ Failure/virology; Pancytopenia/etiology; Pancytopenia/virology; T-Lymphocytes/virology; Fatal Outcome; Sepsis/etiology; Sepsis/virology; Epstein-Barr Virus Infections/complications*; Epstein-Barr Virus Infections/diagnosis*; Epstein-Barr Virus Infections/virology
  14. Law KS, Azman N, Omar EA, Musa MY, Yusoff NM, Sulaiman SA, et al.
    Lipids Health Dis, 2014;13:139.
    PMID: 25163649 DOI: 10.1186/1476-511X-13-139
    Breast cancer is the most common cancer amongst Malaysian women. Both the disease and its treatment can disrupt the lives of the woman and adversely affect all aspects of life and thus can alter a woman's quality of life. The aim of this study was to examine the effect of virgin coconut oil (VCO) on the quality of life (QOL) of patients diagnosed with breast cancer.
    MeSH terms: Adult; Breast Neoplasms/drug therapy*; Female; Humans; Middle Aged; Plant Oils/administration & dosage*; Prospective Studies; Quality of Life*; Surveys and Questionnaires; Treatment Outcome; Dietary Supplements
  15. Tan CE, Fok MW, Luk KD, Cheung KM
    J Orthop Surg (Hong Kong), 2014 Aug;22(2):224-7.
    PMID: 25163961
    PURPOSE. To evaluate the insertion torque and pullout strength of pedicle screws with or without repositioning. METHODS. 20 fresh porcine lumbar vertebrae of similar size were used. The entry point was at the site just lateral and distal to the superior facet joint of the vertebra, and to a depth of 35 mm. A 6.2-mm-diameter, 35-mm-long pedicle screw was inserted parallel to the superior end plate on one side as control. On the other side, an identical screw was first inserted 10º caudal to the superior end plate, and then repositioned parallel to the superior end plate. The insertional torque and pullout strength were measured. RESULTS. Three of the specimens were excluded owing to pedicle fractures during the pullout test. Repositioned pedicle screws were significantly weaker than controls in terms of the maximum insertional torque (3.20 ± 0.28 vs. 2.04 ± 0.28 Nm, 36% difference, p<0.01) and pullout strength (1664 ± 378 vs.1391 ± 295 N, p<0.01). CONCLUSION. Repositioning pedicle screws should be avoided, especially when the pedicle wall is breached. If repositioning is deemed necessary, augmentation with polymethyl methacrylate or a screw with a larger diameter should be considered.
    MeSH terms: Animals; Bone Plates*; Lumbar Vertebrae/surgery*; Materials Testing; Models, Biological; Spinal Fusion/instrumentation*; Swine; Tensile Strength; Torque; Equipment Failure Analysis; Pedicle Screws*
  16. Voon SH, Kiew LV, Lee HB, Lim SH, Noordin MI, Kamkaew A, et al.
    Small, 2014 Dec 29;10(24):4993-5013.
    PMID: 25164105 DOI: 10.1002/smll.201401416
    Animal models, particularly rodents, are major translational models for evaluating novel anticancer therapeutics. In this review, different types of nanostructure-based photosensitizers that have advanced into the in vivo evaluation stage for the photodynamic therapy (PDT) of cancer are described. This article focuses on the in vivo efficacies of the nanostructures as delivery agents and as energy transducers for photosensitizers in animal models. These materials are useful in overcoming solubility issues, lack of tumor specificity, and access to tumors deep in healthy tissue. At the end of this article, the opportunities made possible by these multiplexed nanostructure-based systems are summarized, as well as the considerable challenges associated with obtaining regulatory approval for such materials. The following questions are also addressed: (1) Is there a pressing demand for more nanoparticle materials? (2) What is the prognosis for regulatory approval of nanoparticles to be used in the clinic?
    MeSH terms: Animals; Disease Models, Animal; Liposomes; Micelles; Neoplasms/drug therapy*; Photochemotherapy*; Polymers/chemistry; Photosensitizing Agents/therapeutic use*; Photosensitizing Agents/chemistry; Nanostructures*
  17. Bachok MF, Yusof BN, Ismail A, Hamid AA
    Asia Pac J Clin Nutr, 2014;23(3):369-76.
    PMID: 25164446 DOI: 10.6133/apjcn.2014.23.3.01
    Ulam refers to a group of traditional Malaysian plants commonly consumed as a part of a meal, either in the raw form or after a short blanching process. Many types of ulam are thought to possess blood glucose-lowering properties, but relatively little is known on the effectiveness of ulam in modulating blood glucose levels in humans. This review aims to systematically evaluate the effectiveness of ulam in modulating blood glucose levels in humans. A literature review was conducted using multiple databases with no time restriction. Eleven studies were retrieved based on a priori inclusion and exclusion criteria. In these 11 studies, only Momordica charantia, locally known as "peria katak", was extensively studied, followed by Centella asiatica, locally known as "daun pegaga", and Alternanthera sessilis, locally known as "kermak putih". Of the 11 studies, 9 evaluated the effectiveness of M. charantia on blood glucose parameters, and 7 of which showed significant improvement in at least one parameter of blood glucose concentration. The remaining 2 studies reported nonsignificant improvements in blood glucose parameters, despite having high-quality study design according to Jadad scale. None of the studies related to C. asiatica and A. sessilis showed significant improvement in blood glucose-related parameters. Current clinical evidence does not support the popular claim that ulam has glucose-lowering effects, not even for M. charantia. Hence, further clinical investigation is needed to verify the glucose modulation effect of M. charantia, C. asiatica, and A. sessilis.
    MeSH terms: Blood Glucose/drug effects*; Humans; Malaysia; Plant Extracts/pharmacology*; Plants, Medicinal; Triterpenes/pharmacology*; Vegetables*; Centella; Momordica charantia*
  18. Hasan A, Nurunnabi M, Morshed M, Paul A, Polini A, Kuila T, et al.
    Biomed Res Int, 2014;2014:307519.
    PMID: 25165697 DOI: 10.1155/2014/307519
    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications.
    MeSH terms: Adenosine/isolation & purification; Antibodies/chemistry*; Enzymes/chemistry*; Glucose/isolation & purification; Humans; Hydrogen Peroxide/isolation & purification; Biosensing Techniques/classification; Biosensing Techniques/methods*; Tissue Engineering*; Quantum Dots/chemistry
  19. Ng MH, Duski S, Tan KK, Yusof MR, Low KC, Rose IM, et al.
    Biomed Res Int, 2014;2014:345910.
    PMID: 25165699 DOI: 10.1155/2014/345910
    Calcium phosphate-based bone substitutes have not been used to repair load-bearing bone defects due to their weak mechanical property. In this study, we reevaluated the functional outcomes of combining ceramic block with osteogenic-induced mesenchymal stem cells and platelet-rich plasma (TEB) to repair critical-sized segmental tibial defect. Comparisons were made with fresh marrow-impregnated ceramic block (MIC) and partially demineralized allogeneic bone block (ALLO). Six New Zealand White female rabbits were used in each study group and three rabbits with no implants were used as negative controls. By Day 90, 4/6 rabbits in TEB group and 2/6 in ALLO and MIC groups resumed normal gait pattern. Union was achieved significantly faster in TEB group with a radiological score of 4.50 ± 0.78 versus ALLO (1.06 ± 0.32), MIC (1.28 ± 0.24), and negative controls (0). Histologically, TEB group scored the highest percentage of new bone (82% ± 5.1%) compared to ALLO (5% ± 2.5%) and MIC (26% ± 5.2%). Biomechanically, TEB-treated tibiae achieved the highest compressive strength (43.50 ± 12.72 MPa) compared to those treated with ALLO (15.15 ± 3.57 MPa) and MIC (23.28 ± 6.14 MPa). In conclusion, TEB can repair critical-sized segmental load-bearing bone defects and restore limb function.
    MeSH terms: Animals; Calcium Phosphates/administration & dosage*; Ceramics/pharmacology; Extremities/growth & development; Extremities/injuries; Extremities/physiopathology; Female; Humans; Osteogenesis/drug effects*; Rabbits; Wound Healing/drug effects; Bone Substitutes; Tissue Engineering; Platelet-Rich Plasma/chemistry*; Mesenchymal Stromal Cells/chemistry*
  20. Hossain MA, Roslan HA
    ScientificWorldJournal, 2014;2014:186029.
    PMID: 25165734 DOI: 10.1155/2014/186029
    beta-D-N-Acetylhexosaminidase, a family 20 glycosyl hydrolase, catalyzes the removal of β-1,4-linked N-acetylhexosamine residues from oligosaccharides and their conjugates. We constructed phylogenetic tree of β-hexosaminidases to analyze the evolutionary history and predicted functions of plant hexosaminidases. Phylogenetic analysis reveals the complex history of evolution of plant β-hexosaminidase that can be described by gene duplication events. The 3D structure of tomato β-hexosaminidase (β-Hex-Sl) was predicted by homology modeling using 1now as a template. Structural conformity studies of the best fit model showed that more than 98% of the residues lie inside the favoured and allowed regions where only 0.9% lie in the unfavourable region. Predicted 3D structure contains 531 amino acids residues with glycosyl hydrolase20b domain-I and glycosyl hydrolase20 superfamily domain-II including the (β/α)8 barrel in the central part. The α and β contents of the modeled structure were found to be 33.3% and 12.2%, respectively. Eleven amino acids were found to be involved in ligand-binding site; Asp(330) and Glu(331) could play important roles in enzyme-catalyzed reactions. The predicted model provides a structural framework that can act as a guide to develop a hypothesis for β-Hex-Sl mutagenesis experiments for exploring the functions of this class of enzymes in plant kingdom.
    MeSH terms: Amino Acid Sequence; Base Sequence; beta-N-Acetylhexosaminidases/genetics*; beta-N-Acetylhexosaminidases/chemistry*; Binding Sites/genetics; Models, Genetic; Models, Molecular*; Molecular Sequence Data; Phylogeny*; Protein Conformation; Species Specificity; Likelihood Functions; Sequence Alignment; Lycopersicon esculentum/enzymology*; Evolution, Molecular*; Computational Biology; Gene Duplication; Databases, Nucleic Acid
External Links