OBJECTIVE: To evaluate the effect of different phytohormones on callus induction, subculture cycle, and regeneration studies of callus in C. borivilianum.
MATERIALS AND METHODS: Young shoot buds of C. borivilianum were inoculated on Murashige and Skoog medium fortified with 3% sucrose and different concentrations (0, 1, 5, 10, and 15 mg/L) of either naphthalene acetic acid or 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid and callus induction was evaluated up to four subcultures cycles. Shoot regeneration from callus was studied on Murashige and Skoog media fortified with 6-benzylaminopurine andkinetin or thidiazuron at varied levels (0, 0.5, 1, 2, and 3 mg/L). Microshoots were rooted on Murashige and Skoog media supplemented with 1.0 mg/L indole-3-butyric acid and plantlets were acclimatized before transferred to the natural conditions.
RESULTS: Callus induction was better evidenced on Murashige and Skoog media containing 5 mg/L 2,4-dichlorophenoxyacetic acid up to fourth subculture. Callus differentiated into shoots on Murashige and Skoog media fortified with 6-benzylaminopurine or kinetin, whereas thidiazuron completely failed to regenerate shoots. Furthermore, microshoots rooted on 1.0 mg/L indole-3-butyric acid containing Murashige and Skoog media. The rooted plantlets were successfully acclimatized and established in soil with 88.3% survivability.
CONCLUSION: The type of auxins played an important role in inducing callus tissue from shoot bud explants of Safed musli. In future, this in vitro protocol could benefit in crop improvement programs and serve as a new source of bioactive compounds from Safed musli callus tissue for various therapeutic applications.
SUMMARY: Explants de-differentiated to form callus on Murashige and Skoog media containing 5 mg/L 2,4-D up to fourth subculture.Callus re-differentiated into shoots on Murashige and Skoog media fortified with 0.5 mg/L BAP.In vitro rooting of shoots was achieved on 1.0 mg/L IBA containing Murashige and Skoog media.The rooted plantlets were successfully acclimatized and established in soil with 88.3% survivability. Abbreviations used: MS: Murashige and Skoog, NAA: naphthalene acetic acid, 2,4-D: 2,4-dichlorophenoxyacetic acid, IAA: indole-3-acetic acid, BAP: 6-benzylaminopurine, Kn: Kinetin, TDZ: thidiazuron, IBA: indole-3-butyric acid, RCBD: Randomized Complete Block Design, DMRT: Duncan's Multiple Range Test.
METHODS: Among 477 312 participants, intakes of 23 nutrients were estimated from validated dietary questionnaires. Using results from a previous principal component (PC) analysis, four major nutrient patterns were identified. Hazard ratios (HRs) and 95% confidence intervals (CIs) were computed for the association of each of the four patterns and CRC incidence using multivariate Cox proportional hazards models with adjustment for established CRC risk factors.
RESULTS: During an average of 11 years of follow-up, 4517 incident cases of CRC were documented. A nutrient pattern characterised by high intakes of vitamins and minerals was inversely associated with CRC (HR per 1 s.d.=0.94, 95% CI: 0.92-0.98) as was a pattern characterised by total protein, riboflavin, phosphorus and calcium (HR (1 s.d.)=0.96, 95% CI: 0.93-0.99). The remaining two patterns were not significantly associated with CRC risk.
CONCLUSIONS: Analysing nutrient patterns may improve our understanding of how groups of nutrients relate to CRC.
OBJECTIVES: To assess the effectiveness, safety and appropriate dose regimen of hydroxyurea in people with non-transfusion dependent beta thalassaemia (haemoglobin E combined with beta thalassaemia and beta thalassaemia intermedia).
SEARCH METHODS: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of relevant journals. We also searched ongoing trials registries and the reference lists of relevant articles and reviews.Date of last search: 30 April 2016.
SELECTION CRITERIA: Randomised or quasi-randomised controlled trials of hydroxyurea in people with non-transfusion dependent beta thalassaemia comparing hydroxyurea with placebo or standard treatment or comparing different doses of hydroxyurea.
DATA COLLECTION AND ANALYSIS: Two authors independently applied the inclusion criteria in order to select trials for inclusion. Both authors assessed the risk of bias of trials and extracted the data. A third author verified these assessments.
MAIN RESULTS: No trials comparing hydroxyurea with placebo or standard care were found. However, we included one randomised controlled trial (n = 61) comparing 20 mg/kg/day with 10 mg/kg/day of hydroxyurea for 24 weeks.Both haemoglobin and foetal haemoglobin levels were lower at 24 weeks in the 20 mg group compared with the 10 mg group, mean difference -2.39 (95% confidence interval - 2.8 to -1.98) and mean difference -1.5 (95% confidence interval -1.83 to -1.17), respectively. Major adverse effects were significantly more common in the 20 mg group, for neutropenia risk ratio 9.93 (95% confidence interval 1.34 to 73.97) and for thrombocytopenia risk ratio 3.68 (95% confidence interval 1.13 to 12.07). No difference was reported for minor adverse effects (gastrointestinal disturbances and raised liver enzymes). The effect of hydroxyurea on transfusion frequency was not reported.The overall quality for the outcomes reported was graded as very low mainly because the outcomes were derived from only one small study with an unclear method of allocation concealment.
AUTHORS' CONCLUSIONS: There is no evidence from randomised controlled trials to show whether hydroxyurea has any effect compared with controls on the need for blood transfusion. Administration of 10 mg/kg/day compared to 20 mg/kg/day of hydroxyurea resulted in higher haemoglobin levels and seems safer with fewer adverse effects. It has not been reported whether hydroxyurea is capable of reducing the need for blood transfusion. Large well-designed randomised controlled trials with sufficient duration of follow up are recommended.