Browse publications by year: 2017

  1. Ong TH, Chitra E, Ramamurthy S, Siddalingam RP, Yuen KH, Ambu SP, et al.
    PLoS One, 2017;12(3):e0174888.
    PMID: 28362873 DOI: 10.1371/journal.pone.0174888
    Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections.
    MeSH terms: Anti-Bacterial Agents/pharmacology*; Anti-Bacterial Agents/chemistry*; Microbial Sensitivity Tests; Propolis/chemistry*; Enterococcus faecalis/drug effects*; Biofilms/drug effects; Microscopy, Electron, Transmission; Chitosan/chemistry*; Nanoparticles/ultrastructure; Nanoparticles/chemistry*
  2. Khan AH, Bayat H, Rajabibazl M, Sabri S, Rahimpour A
    World J Microbiol Biotechnol, 2017 Jan;33(1):4.
    PMID: 27837408
    Glycosylation represents the most widespread posttranslational modifications, found in a broad spectrum of natural and therapeutic recombinant proteins. It highly affects bioactivity, site-specificity, stability, solubility, immunogenicity, and serum half-life of glycoproteins. Numerous expression hosts including yeasts, insect cells, transgenic plants, and mammalian cells have been explored for synthesizing therapeutic glycoproteins. However, glycosylation profile of eukaryotic expression systems differs from human. Glycosylation strategies have been proposed for humanizing the glycosylation pathways in expression hosts which is the main theme of this review. Besides, we also highlighted the glycosylation potential of protozoan parasites by emphasizing on the mammalian-like glycosylation potential of Leishmania tarentolae known as Leishmania expression system.
    MeSH terms: Animals; Eukaryotic Cells/metabolism*; Glycoproteins/metabolism*; Glycosylation; Humans; Leishmania/metabolism; Protein Processing, Post-Translational*; Recombinant Proteins/metabolism; Protein Engineering/methods*
  3. Jinfeng EC, Mohamad Rafi MI, Chai Hoon K, Kok Lian H, Yoke Kqueen C
    World J Microbiol Biotechnol, 2017 Jan;33(1):5.
    PMID: 27844243
    Plants are primary source of natural product drugs. However, with every new bioactive molecule reported from a plant source, there follows reports of endangered status or even extinction of a medicinally important plant due to over-harvesting. Hence, the attention turned towards fungi namely the endophytes, which reside within medicinally important plants and thus may have acquired their medicinal properties. Strobilanthes crispus is a traditional medicinal plant which has been used traditionally to treat kidney stones, diabetes, hypertension and cancer as well as having antimicrobial activities. In our efforts to bioprospect for anticancer and antimicrobial metabolites, two fungal endophytes most closely related to the Sordariomycetes sp. showed promising results. Sample (PDA)BL3 showed highest significant antimicrobial activity against 6 bacteria at 200 µg/disc whereas sample (PDA)BL5 has highest significant anticancer activity against all 5 cancer cell lines at concentrations ranging from 30 to 300 μg/ml. As for the gas chromatography coupled with mass spectrometry (GC-MS) results, a total of 20 volatile metabolites identified from sample (PDA)BL3 and 21 volatile metabolites identified from sample (PDA)BL5 having more than 1% abundance. Both GC-MS analysis showed that compound Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) has the highest abundance at 15.10% abundance for sample (PDA)BL3 and 19.00% abundance for sample (PDA)BL5 respectively. In conclusion, these results have shown bio-prospecting potential of endophytic fungi having antimicrobial and anticancer activities as well as its potential secondary metabolites of interest. Therefore, this work has further indicated the medicinal and industrial potential of endophytic fungi.
    MeSH terms: Anti-Infective Agents/pharmacology; Anti-Infective Agents/chemistry; Antineoplastic Agents/pharmacology; Antineoplastic Agents/chemistry; Cell Survival/drug effects; Saccharomycetales/isolation & purification*; Saccharomycetales/chemistry; Humans; Gas Chromatography-Mass Spectrometry; Methylene Chloride/pharmacology*; Methylene Chloride/chemistry*; Microbial Sensitivity Tests; Plants, Medicinal/microbiology*; HT29 Cells; Cell Line, Tumor; Cell Proliferation/drug effects; Hep G2 Cells; Endophytes/isolation & purification*; Endophytes/chemistry; MCF-7 Cells; A549 Cells
  4. Toledo Hijo AA, Maximo GJ, Costa MC, Cunha RL, Pereira JF, Kurnia KA, et al.
    J Phys Chem B, 2017 04 13;121(14):3177-3189.
    PMID: 28332847 DOI: 10.1021/acs.jpcb.7b01384
    Protic ionic liquids (PILs) have emerged as promising compounds and attracted the interest of the industry and the academy community, due to their easy preparation and unique properties. In the context of green chemistry, the use of biocompounds, such as fatty acids, for their synthesis could disclose a possible alternative way to produce ILs with a low or nontoxic effect and, consequently, expanding their applicability in biobased processes or in the development of bioproducts. This work addressed efforts to a better comprehension of the complex solid-[liquid crystal]-liquid thermodynamic equilibrium of 20 new PILs synthesized by using fatty acids commonly found in vegetable oils, as well as their rheological profile and self-assembling ability. The work revealed that their phase equilibrium and physical properties are significantly impacted by the structure of the ions used for their synthesis. The use of unsaturated fatty acids and bis(2-hydroxyethyl)ammonium for the synthesis of these biobased ILs led to a drastic decreasing of their melting temperatures. Also, the longest alkyl chain fatty acids promoted higher self-assembling and more stable mesophases. Besides their sustainable appeal, the marked high viscosity, non-Newtonian profile, and very low critical micellar concentration values of the PIL crystals here disclosed make them interesting renewable compounds with potential applications as emulsifiers, stabilizers, thickeners, or biolubricants.
  5. Soni N, Tekade M, Kesharwani P, Bhattacharya P, Maheshwari R, Dua K, et al.
    Curr Pharm Des, 2017 08 30;23(21):3084-3098.
    PMID: 28356042 DOI: 10.2174/1381612823666170329150201
    BACKGROUND: Disseminated metastatic cancer requires insistent management owing to its reduced responsiveness for chemotherapeutic agents, toxicity to normal cells consequently lower survival rate and hampered quality of life of patients.

    METHODS: Dendrimer mediated cancer therapy is advantageous over conventional chemotherapy, radiotherapy and surgical resection due to reduced systemic toxicity, and molecular level cell injury to cancerous mass, for an appreciable survival of the subject. Recently used dendrimer mediated nanotechnology for oncology aims to conquer these challenges. Dendrimers based nano-constructs are having architectures comparable to that of biological vesicles present in the human body.

    RESULTS: Operating with dendrimer technology, proffers the exclusive and novel strategies with numerous applications in cancer management involving diagnostics, therapeutics, imaging, and prognostics by sub-molecular interactions. Dendrimers are designed to acquire the benefits of the malignant tumor morphology and characteristics, i.e. leaky vasculature of tumor, expression of specific cell surface antigen, and rapid proliferation.

    CONCLUSION: Dendrimers mediated targeted therapy recommends innovatory function equally in diagnostics (imaging, immune-detection) as well as chemotherapy. Currently, dendrimers as nanomedicine has offered a strong assurance and advancement in drastically varying approaches towards cancer imaging and treatment. The present review discusses different approaches for cancer diagnosis and treatment such as, targeted and control therapy, photodynamic therapy, photo-thermal therapy, gene therapy, antiangiogenics therapy, radiotherapy etc.

    MeSH terms: Humans; Neoplasm Metastasis; Neoplasms/drug therapy*; Neoplasms/pathology; Dendrimers/administration & dosage; Dendrimers/chemical synthesis; Dendrimers/therapeutic use*; Dendrimers/chemistry
  6. Lim TS, Shanmuganathan M, Wong I, Goh BL
    BMC Nephrol, 2017 Mar 29;18(1):108.
    PMID: 28356062 DOI: 10.1186/s12882-017-0540-7
    BACKGROUND: For peritoneal dialysis patients, the likelihood of conception is low and the probability of getting through the pregnancy successfully is even lower. Almost 60 years after the first reported case of a successful pregnancy in a dialysis patient, many issues concerning pregnancy in dialysis patients remain unresolved. Our patient's pregnancy is considered high risk as she has end stage renal failure and falls in the category of advance maternal age for pregnancy. We describe here the course of her uneventful pregnancy which we hope will contribute to the overall knowledge and management of pregnancy in elderly patients receiving peritoneal dialysis.

    CASE PRESENTATION: We report a successful elderly multigravid pregnancy, in a patient undergoing continuous ambulatory peritoneal dialysis (CAPD). Her pregnancy was detected early and she was closely managed by the nephrologist and obstetrician. She tolerated the same PD prescription throughout 36 weeks of pregnancy with daily ultrafiltration of 500-1500mls. Her blood pressure remained well controlled without the need of any antihypertensive medication. Her total Kt/V ranged from 1.93 to 2.73. Her blood parameters remained stable and she was electively admitted at 36 weeks for a trans-peritoneal lower segment caesarian section and bilateral tubal ligation.

    CONCLUSIONS: At the age of 42, our case is the oldest reported successful pregnancy in a patient on peritoneal dialysis. With careful counselling and meticulous follow up, we have shown that woman in the early stage of end stage renal failure can successfully deliver a full term baby without any complications. Therefore, these women should not be discourage from conceiving even if they are in advanced maternal age for pregnancy.

    MeSH terms: Adult; Ambulatory Care/methods*; Female; Humans; Peritoneal Dialysis/methods*; Pregnancy; Pregnancy Complications/diagnosis*; Pregnancy Complications/therapy*; Gravidity; Live Birth*; Renal Insufficiency, Chronic/diagnosis*; Renal Insufficiency, Chronic/therapy*
  7. Meng W, Zhu Z, Jiang X, Too CL, Uebe S, Jagodic M, et al.
    Arthritis Res Ther, 2017 03 29;19(1):71.
    PMID: 28356135 DOI: 10.1186/s13075-017-1276-2
    BACKGROUND: Multiple factors, including interactions between genetic and environmental risks, are important in susceptibility to rheumatoid arthritis (RA). However, the underlying mechanism is not fully understood. This study was undertaken to evaluate whether DNA methylation can mediate the interaction between genotype and smoking in the development of anti-citrullinated peptide antibody (ACPA)-positive RA.

    METHODS: We investigated the gene-smoking interactions in DNA methylation using 393 individuals from the Epidemiological Investigation of Rheumatoid Arthritis (EIRA). The interaction between rs6933349 and smoking in the risk of developing ACPA-positive RA was further evaluated in a larger portion of the EIRA (1119 controls and 944 ACPA-positive patients with RA), and in the Malaysian Epidemiological Investigation of Rheumatoid Arthritis (MyEIRA) (1556 controls and 792 ACPA-positive patients with RA). Finally, mediation analysis was performed to investigate whether DNA methylation of cg21325723 mediates this gene-environment interaction on the risk of developing of ACPA-positive RA.

    RESULTS: We identified and replicated one significant gene-environment interaction between rs6933349 and smoking in DNA methylation of cg21325723. This gene-smoking interaction is a novel interaction in the risk of developing ACPA-positive in both Caucasian (multiplicative P value = 0.056; additive P value = 0.016) and Asian populations (multiplicative P value = 0.035; additive P value = 0.00027), and it is mediated through DNA methylation of cg21325723.

    CONCLUSIONS: We showed that DNA methylation of cg21325723 can mediate the gene-environment interaction between rs6933349 and smoking, impacting the risk of developing ACPA-positive RA, thus being a potential regulator that integrates both internal genetic and external environmental risk factors.
    MeSH terms: Adult; Aged; Arthritis, Rheumatoid/genetics*; Arthritis, Rheumatoid/immunology; Autoantibodies/immunology*; Autoantigens/immunology; China/ethnology; Female; Genotype; Humans; India; Major Histocompatibility Complex/genetics; Malaysia/ethnology; Male; Middle Aged; Peptides, Cyclic/immunology; Smoking/adverse effects*; DNA Methylation/genetics*; Oligonucleotide Array Sequence Analysis; Polymorphism, Single Nucleotide; Gene-Environment Interaction*
  8. Etti IC, Rasedee A, Hashim NM, Abdul AB, Kadir A, Yeap SK, et al.
    Drug Des Devel Ther, 2017;11:865-879.
    PMID: 28356713 DOI: 10.2147/DDDT.S124324
    Artonin E is a prenylated flavonoid compound isolated from the stem bark of Artocarpus elasticus. This phytochemical has been previously reported to be drug-like with full compliance to Lipinski's rule of five and good physicochemical properties when compared with 95% of orally available drugs. It has also been shown to possess unique medicinal properties that can be utilized in view of alleviating most human disease conditions. In this study, we investigated the cytotoxic mechanism of Artonin E in MCF-7 breast cancer cells, which has so far not been reported. In this context, Artonin E significantly suppressed the breast cancer cell's viability while inducing apoptosis in a dose-dependent manner. This apoptosis induction was caspase dependent, and it is mediated mainly through the intrinsic pathway with the elevation of total reactive oxygen species. Gene and protein expression studies revealed significant upregulation of cytochrome c, Bax, caspases 7 and 9, and p21 in Artonin E-treated MCF-7 cells, while MAPK and cyclin D were downregulated. Livin, a member of the inhibitors of apoptosis, whose upregulation has been noted to precede chemotherapeutic resistance and apoptosis evasion was remarkably repressed. In all, Artonin E stood high as a potential agent in the treatment of breast cancer.
    MeSH terms: Antineoplastic Agents/pharmacology*; Cell Survival/drug effects; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Flavonoids/pharmacology*; Humans; Mitochondria/drug effects*; Mitochondria/metabolism; Structure-Activity Relationship; Tumor Cells, Cultured; Molecular Structure; Tumor Suppressor Protein p53/metabolism*; Apoptosis/drug effects*; Reactive Oxygen Species/metabolism*; Cell Proliferation/drug effects; Cell Cycle Checkpoints/drug effects; G1 Phase Cell Cycle Checkpoints/drug effects*; MCF-7 Cells
  9. Chua SS, Choo SM, Sulaiman CZ, Omar A, Thong MK
    Ther Clin Risk Manag, 2017;13:345-353.
    PMID: 28356748 DOI: 10.2147/TCRM.S128504
    BACKGROUND AND PURPOSE: Drug administration errors are more likely to reach the patient than other medication errors. The main aim of this study was to determine whether the sharing of information on drug administration errors among health care providers would reduce such problems.

    PATIENTS AND METHODS: This study involved direct, undisguised observations of drug administrations in two pediatric wards of a major teaching hospital in Kuala Lumpur, Malaysia. This study consisted of two phases: Phase 1 (pre-intervention) and Phase 2 (post-intervention). Data were collected by two observers over a 40-day period in both Phase 1 and Phase 2 of the study. Both observers were pharmacy graduates: Observer 1 just completed her undergraduate pharmacy degree, whereas Observer 2 was doing her one-year internship as a provisionally registered pharmacist in the hospital under study. A drug administration error was defined as a discrepancy between the drug regimen received by the patient and that intended by the prescriber and also drug administration procedures that did not follow standard hospital policies and procedures. Results from Phase 1 of the study were analyzed, presented and discussed with the ward staff before commencement of data collection in Phase 2.

    RESULTS: A total of 1,284 and 1,401 doses of drugs were administered in Phase 1 and Phase 2, respectively. The rate of drug administration errors reduced significantly from Phase 1 to Phase 2 (44.3% versus 28.6%, respectively; P<0.001). Logistic regression analysis showed that the adjusted odds of drug administration errors in Phase 1 of the study were almost three times that in Phase 2 (P<0.001). The most common types of errors were incorrect administration technique and incorrect drug preparation. Nasogastric and intravenous routes of drug administration contributed significantly to the rate of drug administration errors.

    CONCLUSION: This study showed that sharing of the types of errors that had occurred was significantly associated with a reduction in drug administration errors.

  10. Phuah NH, Azmi MN, Awang K, Nagoor NH
    Onco Targets Ther, 2017;10:1695-1705.
    PMID: 28356756 DOI: 10.2147/OTT.S117492
    BACKGROUND: Cervical cancer is the fourth most frequent malignancy affecting women worldwide, but drug resistance and toxicities remain a major challenge in chemotherapy. The use of natural compounds is promising because they are less toxic and able to target multiple signaling pathways. The 1'S-1'-acetoxychavicol acetate (ACA), a natural compound isolated from wild ginger Alpinia conchigera, induced cytotoxicity on various cancer cells including cervical cancer. MicroRNAs (miRNAs) are short noncoding RNAs that regulate numerous biological processes, such as apoptosis and chemosensitivity. Past studies reported that miR-629 is upregulated in many cancers, and its expression was altered in ACA-treated cervical cancer cells. However, the role of miR-629 in regulating sensitivity toward ACA or other anticancer agents has not been reported. Hence, this study aims to investigate the role of miR-629 in regulating response toward ACA on cervical cancer cells.

    METHODS: The miR-629 expression following transfection with miR-629 hairpin inhibitor and hairpin inhibitor negative control was measured using quantitative real-time polymerase chain reaction (RT-qPCR). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to investigate sensitivity toward ACA. Apoptosis was detected using Annexin V/propidium iodide and Caspase 3/7 assays. The gene target for miR-629 was identified using miRNA target prediction programs, luciferase reporter assay and Western blots. Gene overexpression studies were performed to evaluate its role in regulating response toward ACA.

    RESULTS: Transfection with miR-629 hairpin inhibitor downregulated its expression in both cervical cancer cell lines. Suppression of miR-629 increased sensitivity toward ACA by reducing cell proliferation and inducing apoptosis. Luciferase reporter assay confirmed RSU1 as a direct target of miR-629. Overexpression of miR-629 decreased RSU1 protein expression, while inhibition of miR-629 increased RSU1 protein expression. Overexpression of RSU1 augmented antiproliferative and apoptosis-inducing effects of ACA.

    CONCLUSION: Our findings showed that combination of ACA with miR-629 and RSU1 may provide a potential strategy in treating cervical cancer.

  11. Dash R, Das R, Junaid M, Akash MF, Islam A, Hosen SZ
    Adv Appl Bioinform Chem, 2017;10:11-28.
    PMID: 28356762 DOI: 10.2147/AABC.S115859
    Ebola virus (EBOV) is one of the lethal viruses, causing more than 24 epidemic outbreaks to date. Despite having available molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet for the management and avoidance of EBOV infections in humans. Disclosing this, the present study described an epitope-based peptide vaccine against EBOV, using a combination of B-cell and T-cell epitope predictions, followed by molecular docking and molecular dynamics simulation approach. Here, protein sequences of all glycoproteins of EBOV were collected and examined via in silico methods to determine the most immunogenic protein. From the identified antigenic protein, the peptide region ranging from 186 to 220 and the sequence HKEGAFFLY from the positions of 154-162 were considered the most potential B-cell and T-cell epitopes, correspondingly. Moreover, this peptide (HKEGAFFLY) interacted with HLA-A*32:15 with the highest binding energy and stability, and also a good conservancy of 83.85% with maximum population coverage. The results imply that the designed epitopes could manifest vigorous enduring defensive immunity against EBOV.
    MeSH terms: Amino Acid Sequence; B-Lymphocytes; Glycoproteins; Humans; Peptides; HLA-A Antigens; Epitopes, T-Lymphocyte; Hemorrhagic Fever, Ebola; Vaccines, Subunit; Ebolavirus; Molecular Dynamics Simulation; Epidemics; Molecular Docking Simulation
  12. Yeo FKS, Bouchon R, Kuijken R, Loriaux A, Boyd C, Niks RE, et al.
    PMID: 28356783 DOI: 10.1007/s11032-017-0624-x
    Partial resistance quantitative trait loci (QTLs) Rphq11 and rphq16 against Puccinia hordei isolate 1.2.1 were previously mapped in seedlings of the mapping populations Steptoe/Morex and Oregon Wolfe Barleys, respectively. In this study, QTL mapping was performed at adult plant stage for the two mapping populations challenged with the same rust isolate. The results suggest that Rphq11 and rphq16 are effective only at seedling stage, and not at adult plant stage. The cloning of several genes responsible for partial resistance of barley to P. hordei will allow elucidation of the molecular basis of this type of plant defence. A map-based cloning approach requires to fine-map the QTL in a narrow genetic window. In this study, Rphq11 and rphq16 were fine-mapped using an approach aiming at speeding up the development of plant material and simplifying its evaluation. The plant materials for fine-mapping were identified from early plant materials developed to produce QTL-NILs. The material was first selected to carry the targeted QTL in heterozygous condition and susceptibility alleles at other resistance QTLs in homozygous condition. This strategy took four to five generations to obtain fixed QTL recombinants (i.e., homozygous resistant at the Rphq11 or rphq16 QTL alleles, homozygous susceptible at the non-targeted QTL alleles). In less than 2 years, Rphq11 was fine-mapped into a 0.2-cM genetic interval and a 1.4-cM genetic interval for rphq16. The strongest candidate gene for Rphq11 is a phospholipid hydroperoxide glutathione peroxidase. Thus far, no candidate gene was identified for rphq16.
    MeSH terms: Alleles; Hordeum; Basidiomycota; Chromosome Mapping; Cloning, Molecular; Homozygote; Oregon; Seedlings; Quantitative Trait Loci
  13. Muchlisin ZA, Murda T, Yulvizar C, Dewiyanti I, Fadli N, Afrido F, et al.
    F1000Res, 2017;6:137.
    PMID: 28357045 DOI: 10.12688/f1000research.10693.1
    Background The objective of the present study was to determine the optimum dosage of probiotic in the diet of keureling fish ( Tor tambra) fry. MethodsLactobacillus casei from Yakult® was used as a starter, and enhanced with Curcuma xanthorrhiza, Kaempferia galanga and molasses. The mixture was fermented for 7 days prior to use as probiotic in a formulated diet containing 30% crude protein. Four levels of probiotic dosage; 0 ml kg -1 (control), 5 ml kg -1, 10 ml kg -1 and 15 ml kg -1 were tested in this study. The fish was fed twice a day at 08.00 AM and 06.00 PM at the ration of 5% body weight for 80 days. Results The results showed that growth performance and feed efficiency increased with increasing probiotic dosage in the diet from control (no probiotic) to 10 ml kg -1 of probiotic dosage and then decreased when the dosage was increased up to 15 ml kg -1. Conclusions The best values for all measured parameters were recorded at the dosage of 10 ml kg -1. Therefore, it was concluded that the optimum dosage of enhanced probiotic for T. tambra fry was 10 ml kg -1 of feed.
  14. Ang WJ, Md Kadir SZ, Fadzillah AJ, Zunaina E
    Cureus, 2017 Feb 17;9(2):e1035.
    PMID: 28357167 DOI: 10.7759/cureus.1035
    We report three patients with corneal bee sting at our tertiary care center in a three-year period starting from 2014 to 2016. All patients sustained a bee sting injury to the cornea. All patients received early preoperative topical antibiotics, topical cycloplegic and intensive topical steroids. However, the timing of the initial presentation, the duration, and the location of the retained stinger differed in each case leading to different postsurgical outcomes.
    MeSH terms: Animals; Anti-Bacterial Agents; Bees; Cornea; Humans; Insect Bites and Stings; Mydriatics; Tertiary Care Centers
  15. Khalid K, Noh MAM, Zain SM, Khan MN
    Top Curr Chem (Cham), 2017 Apr;375(2):45.
    PMID: 28357712 DOI: 10.1007/s41061-017-0132-9
    The efficiency of counterion affinity towards ionic micelles is often described in terms of the degree of counterion binding (β X ) to ionic micelles or the conventional ion-exchange constant ([Formula: see text]) or relative binding constant ([Formula: see text]) of X - and Br- counterions. This review describes the use of ionized phenyl salicylate ions, PSa-, as a new probe to determine [Formula: see text] values using a semiempirical spectrophotometric method. The value of [Formula: see text] is found to be comparable to reported values obtained using different probes by the semiempirical kinetic method as well as different physical methods. Application of semiempirical methods for calculation of [Formula: see text] or [Formula: see text] values involves an inherent assumption that these values are independent of the physicochemical characteristics of the probe molecule.
  16. Ahmed A, Devadason ES, Al-Amin AQ
    Environ Sci Pollut Res Int, 2017 May;24(13):12347-12359.
    PMID: 28357797 DOI: 10.1007/s11356-017-8747-5
    This study accounts for the Hicks neutral technical change in a calibrated model of climate analysis, to identify the optimum level of technical change for addressing climate changes. It demonstrates the reduction to crop damages, the costs to technical change, and the net gains for the adoption of technical change for a climate-sensitive Pakistan economy. The calibrated model assesses the net gains of technical change for the overall economy and at the agriculture-specific level. The study finds that the gains of technical change are overwhelmingly higher than the costs across the agriculture subsectors. The gains and costs following technical change differ substantially for different crops. More importantly, the study finds a cost-effective optimal level of technical change that potentially reduces crop damages to a minimum possible level. The study therefore contends that the climate policy for Pakistan should consider the role of technical change in addressing climate impacts on the agriculture sector.
    MeSH terms: Agriculture/economics; Climate*; Pakistan; Crops, Agricultural*; Climate Change
  17. Xu J, Zheng X, Cheng KK, Chang X, Shen G, Liu M, et al.
    Sci Rep, 2017 03 30;7:45580.
    PMID: 28358020 DOI: 10.1038/srep45580
    Chronic atrophic gastritis (CAG) is a common gastrointestinal disease which has been considered as precancerous lesions of gastric carcinoma. Previously, electro-acupuncture stimulation has been shown to be effective in ameliorating symptoms of CAG. However the underlying mechanism of this beneficial treatment is yet to be established. In the present study, an integrated histopathological examination along with molecular biological assay, as well as 1H NMR analysis of multiple biological samples (urine, serum, stomach, cortex and medulla) were employed to systematically assess the pathology of CAG and therapeutic effect of electro-acupuncture stimulation at Sibai (ST 2), Liangmen (ST 21), and Zusanli (ST 36) acupoints located in the stomach meridian using a rat model of CAG. The current results showed that CAG caused comprehensive metabolic alterations including the TCA cycle, glycolysis, membrane metabolism and catabolism, gut microbiota-related metabolism. On the other hand, electro-acupuncture treatment was found able to normalize a number of CAG-induced metabolomics changes by alleviating membrane catabolism, restoring function of neurotransmitter in brain and partially reverse the CAG-induced perturbation in gut microbiota metabolism. These findings provided new insights into the biochemistry of CAG and mechanism of the therapeutic effect of electro-acupuncture stimulations.
    MeSH terms: Animals; Brain/metabolism; Disease Models, Animal; Gastric Mucosa/metabolism; Gastric Mucosa/pathology; Gastritis, Atrophic/metabolism; Gastritis, Atrophic/pathology*; Gastritis, Atrophic/therapy*; Male; Magnetic Resonance Spectroscopy; Electroacupuncture*; Cell Proliferation; Rats
  18. Rothan HA, Amini E, Faraj FL, Golpich M, Teoh TC, Gholami K, et al.
    Sci Rep, 2017 03 30;7:45540.
    PMID: 28358047 DOI: 10.1038/srep45540
    N-methyl-D-aspartate receptors (NMDAR) play a central role in epileptogensis and NMDAR antagonists have been shown to have antiepileptic effects in animals and humans. Despite significant progress in the development of antiepileptic therapies over the previous 3 decades, a need still exists for novel therapies. We screened an in-house library of small molecules targeting the NMDA receptor. A novel indolyl compound, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, (DDBM) showed the best binding with the NMDA receptor and computational docking data showed that DDBM antagonised the binding sites of the NMDA receptor at lower docking energies compared to other molecules. Using a rat electroconvulsive shock (ECS) model of epilepsy we showed that DDBM decreased seizure duration and improved the histological outcomes. Our data show for the first time that indolyls like DDBM have robust anticonvulsive activity and have the potential to be developed as novel anticonvulsants.
    MeSH terms: Animals; Anticonvulsants/administration & dosage*; Anticonvulsants/chemical synthesis; Disease Models, Animal; Epilepsy/complications; Epilepsy/prevention & control*; Hippocampus/drug effects; Hippocampus/pathology; Indoles/administration & dosage*; Indoles/chemical synthesis; Male; Malondialdehyde/administration & dosage*; Malondialdehyde/chemical synthesis; Protein Binding; Quinazolines/chemical synthesis; Seizures/complications; Seizures/prevention & control*; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors*; Receptors, N-Methyl-D-Aspartate/metabolism; Rats, Sprague-Dawley; Molecular Docking Simulation
  19. Sarjit A, Dykes GA
    J Food Prot, 2017 May 01;80(5):750-757.
    PMID: 28358259 DOI: 10.4315/0362-028X.JFP-16-414
    Thermophilic Campylobacter and Salmonella enterica are major causes of gastrointestinal foodborne infection. Survival of these pathogens on food-associated surfaces is a risk contributing to their spread through the food system. This study examined the transfer of two strains each of C. jejuni, C. coli, Salmonella Enteritidis, and Salmonella Typhimurium from chicken meat to a knife or scissors used on either a plastic or wooden cutting board. Each strain of Campylobacter and Salmonella at ∼108 CFU mL-1 was inoculated (5 mL) onto 25 g of chicken meat with skin and allowed to attach (for 10 min). The meat was then cut (20 times per implement) into 1-cm2 pieces with either a knife or scissors on either a plastic or wooden cutting board. The numbers of pathogens transferred from meat onto cutting implements and cutting board surfaces were enumerated. The surfaces were subsequently either rinsed with water or rinsed with water and wiped with a kitchen towel to mimic commonly used superficial cleaning practices for these implements, and the numbers of pathogens were enumerated again. The bacterial numbers for both pathogens were determined on thin-layer agar. The attachment of the Salmonella strains to chicken meat (∼7.0 to 7.8 log CFU cm-2) was higher than the attachment of the Campylobacter strains (∼4.6 to 6.6 log CFU cm-2). All four Salmonella strains transferred in higher numbers (∼1.9 to 6.3 log CFU cm-2) to all surfaces than did the Campylobacter strains (∼1.1 to 3.9 log CFU cm-2). The transfer rates of both pathogens from the chicken meat to all the surfaces examined varied substantially between ∼0 and 21.1%. The highest rate of transfer (∼21.1%) observed was for C. coli 2875 when transferred from the chicken meat to the scissors. Most cleaning treatments reduced the numbers of both pathogens (∼0.3 to 4.1 log CFU cm-2) transferred to all the surfaces. Our study gives insights into the risks associated with the transfer of Campylobacter and Salmonella from poultry to the surfaces used in poultry preparation.
  20. Zulazmi NA, Gopalsamy B, Min JC, Farouk AA, Sulaiman MR, Bharatham BH, et al.
    Molecules, 2017 Mar 30;22(4).
    PMID: 28358309 DOI: 10.3390/molecules22040555
    The present study investigates the involvement of the l-arginine-Nitric Oxide-cGMP-K⁺ ATP pathways responsible for the action of anti-allodynic and antihyperalgesic activities of zerumbone in chronic constriction injury (CCI) induced neuropathic pain in mice. The role of l-arginine-NO-cGMP-K⁺ was assessed by the von Frey and the Randall-Selitto tests. Both allodynia and hyperalgesia assessments were carried out on the 14th day post CCI, 30 min after treatments were given for each respective pathway. Anti-allodynic and antihyperalgesic effects of zerumbone (10 mg/kg, i.p) were significantly reversed by the pre-treatment of l-arginine (10 mg/kg), 1H [1,2,4]Oxadiazole[4,3a]quinoxalin-1-one (ODQ), a soluble guanosyl cyclase blocker (2 mg/kg i.p.) and glibenclamide (ATP-sensitive potassium channel blocker) (10 mg/kg i.p.) (p < 0.05). Taken together, these results indicate that systemic administration of zerumbone produces significant anti-allodynic and antihyperalgesic activities in neuropathic pain in mice possibly due to involvement of the l-arginine-NO-cGMP-PKG-K⁺ ATP channel pathways in CCI model.
    MeSH terms: Analgesics/administration & dosage*; Analgesics/pharmacology; Animals; Arginine/metabolism; Constriction; Disease Models, Animal; Cyclic GMP/metabolism; Hyperalgesia/drug therapy*; Hyperalgesia/metabolism; Male; Neuralgia/drug therapy*; Neuralgia/etiology; Neuralgia/metabolism; Nitric Oxide/metabolism; Pain Measurement; Sesquiterpenes/administration & dosage*; Sesquiterpenes/pharmacology; Signal Transduction/drug effects*; Mice; KATP Channels/metabolism
External Links