Aim: To evaluate the nephroprotective activity of CAE and its fractions in cisplatin-induced nephrotoxicity and to assess whether they compromise the anticancer efficacy of cisplatin.
Materials and methods: Cisplatin-induced renal damage was induced in Ehrlich Ascites Carcinoma (EAC) bearing mice during mild phase of tumor growth. CAE and its butanol (BF) and aqueous (AF) fractions were administered orally from the 5th day for five days. Nephroprotective potential (serum urea, creatinine, renal histology) and effect of VC on cisplatin anticancer efficacy (tumor volume, viable tumor cells, percentage increase in life span (% ILS)) were calculated.
Result: CAE and its fractions significantly reversed the cisplatin-induced renal damage. CAE and BF treated animals showed regeneration of 50%-75% of proximal tubular cells. Compared to EAC control mice, the % ILS of the cisplatin-treated group was 244% and it was further extended to 379% after CAE administration. The % ILS in the CAE treated group was 1.6 times higher than the cisplatin alone treated group. GC-MS study showed the presence of astaxanthin and betulin.
Conclusion: CAE of VC reverses cisplatin-induced kidney damage as well as regenerates proximal tubular epithelial cells, without compromising the anticancer effect of cisplatin. When CAE was further fractionated, the nephroprotective activity was retained, but the beneficial anticancer effect of cisplatin was compromised.
METHODS: We identified providers from 5 countries where national HPV vaccination programs were at various stages of implementation: Argentina, Malaysia, South Africa, South Korea, and Spain. Providers authorized to administer adolescent vaccines completed an in-depth survey, reporting perceptions of barriers and facilitators to initiating and completing HPV vaccination, and logistical challenges to HPV vaccination.
RESULTS: Among 151 providers, common barriers to HPV vaccination initiation across all countries were parents' lack of awareness (39%), concerns about vaccine safety or efficacy (33%), and cost to patients (30%). Vaccination education campaign (70%) was the most commonly cited facilitator of HPV vaccination initiation. Common barriers to series completion included no reminder system or dosing schedule (37%), loss to follow-up or forgetting appointment (29%), and cost to patients (25%). Cited facilitators to completing the vaccine series were education campaigns (45%), affordable vaccination (32%), and reminder/recall systems (22%). Among all countries, high cost of vaccination was the most common logistical challenge to offering vaccination to adolescents (33%).
CONCLUSIONS: Incorporating provider insights into future HPV vaccination programs could accelerate vaccine delivery to increase HPV vaccination rates globally.
OBJECTIVE: Our objective was to create a framework that can guide future implementation and research on the use of eHealth tools to support patients with growth disorders who require growth hormone therapy.
METHODS: A total of 12 pediatric endocrinologists with experience in eHealth, from a wide geographical distribution, participated in a series of online discussions. We summarized the discussions of 3 workshops, conducted during 2020, on the use of eHealth in the management of growth disorders, which were structured to provide insights on existing challenges, opportunities, and solutions for the implementation of eHealth tools across the patient journey, from referral to the end of pediatric therapy.
RESULTS: A total of 815 responses were collected from 2 questionnaire-based activities covering referral and diagnosis of growth disorders, and subsequent growth hormone therapy stages of the patient pathway, relating to physicians, nurses, and patients, parents, or caregivers. We mapped the feedback from those discussions into a framework that we developed as a guide to integration of eHealth tools across the patient journey. Responses focused on improved clinical management, such as growth monitoring and automation of referral for early detection of growth disorders, which could trigger rapid evaluation and diagnosis. Patient support included the use of eHealth for enhanced patient and caregiver communication, better access to educational opportunities, and enhanced medical and psychological support during growth hormone therapy management. Given the potential availability of patient data from connected devices, artificial intelligence can be used to predict adherence and personalize patient support. Providing evidence to demonstrate the value and utility of eHealth tools will ensure that these tools are widely accepted, trusted, and used in clinical practice, but implementation issues (eg, adaptation to specific clinical settings) must be addressed.
CONCLUSIONS: The use of eHealth in growth hormone therapy has major potential to improve the management of growth disorders along the patient journey. Combining objective clinical information and patient adherence data is vital in supporting decision-making and the development of new eHealth tools. Involvement of clinicians and patients in the process of integrating such technologies into clinical practice is essential for implementation and developing evidence that eHealth tools can provide value across the patient pathway.
METHODS: Over six months in 2018, we recruited 368 adults who met the WHO 2009 criteria for probable dengue infection. They underwent the following blood tests: full blood count, dengue virus (DENV) rapid diagnostic test (RDT), ELISA (dengue IgM and IgG), nested RT-PCR for dengue, multiplex qRT-PCR for Zika, Chikungunya and dengue as well as PCR tests for Leptopspira spp., Japanese encephalitis and West Nile virus.
RESULTS: Laboratory-confirmed dengue infections (defined by positive tests in NS1, IgM, high-titre IgG or nested RT-PCR) were found in 167 (45.4%) patients. Of these 167 dengue patients, only 104 (62.3%) were positive on rapid diagnostic testing. Dengue infection was significantly associated with the following features: family or neighbours with dengue in the past week (AOR: 3.59, 95% CI:2.14-6.00, p<0.001), cutaneous rash (AOR: 3.58, 95% CI:1.77-7.23, p<0.001), increased temperature (AOR: 1.33, 95% CI:1.04-1.70, p = 0.021), leucopenia (white cell count < 4,000/μL) (AOR: 3.44, 95% CI:1.72-6.89, p<0.001) and thrombocytopenia (platelet count <150,000/μL)(AOR: 4.63, 95% CI:2.33-9.21, p<0.001). Dengue infection was negatively associated with runny nose (AOR: 0.47, 95% CI:0.29-0.78, p = 0.003) and arthralgia (AOR: 0.42, 95% CI:0.24-0.75, p = 0.004). Serotyping by nested RT-PCR revealed mostly mono-infections with DENV-2 (n = 64), DENV-1 (n = 32) and DENV-3 (n = 17); 14 co-infections occurred with DENV-1/DENV-2 (n = 13) and DENV-1/DENV-4 (n = 1). Besides dengue, none of the pathogens above were found in patients' serum.
CONCLUSIONS: Acute undifferentiated febrile infections are a diagnostic challenge for community-based clinicians. Rapid diagnostic tests are increasingly used to diagnose dengue infection but negative tests should be interpreted with caution as they fail to detect a considerable proportion of dengue infection. Certain clinical features and haematological parameters are important in the clinical diagnosis of dengue infection.