Affiliations 

  • 1 Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia
  • 2 Prima Nexus Sdn. Bhd., Menara CIMB, Jalan Stesen Sentral 2, Kuala Lumpur, Malaysia
  • 3 Perdana University School of Liberal Arts, Science and Technology (PUScLST), Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan Damansara Heights, Kuala Lumpur, 50490, Malaysia
  • 4 School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, Subang Jaya, 47500, Malaysia
  • 5 Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, 43400 UPM, Malaysia
  • 6 Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur, 56000, Malaysia. Electronic address: drrose@ppukm.ukm.edu.my
  • 7 Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400 UPM, Malaysia; Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, Selangor, 42300, Malaysia. Electronic address: cvk717@gmail.com
Microbiol Res, 2021 May;246:126674.
PMID: 33549960 DOI: 10.1016/j.micres.2020.126674

Abstract

Mycobacterium tuberculosis complex (MTBC) refers to a group of mycobacteria encompassing nine members of closely related species that causes tuberculosis in animals and humans. Among the nine members, Mycobacterium tuberculosis (M. tuberculosis) remains the main causative agent for human tuberculosis that results in high mortality and morbidity globally. In general, MTBC species are low in diversity but exhibit distinctive biological differences and phenotypes among different MTBC lineages. MTBC species are likely to have evolved from a common ancestor through insertions/deletions processes resulting in species speciation with different degrees of pathogenicity. The pathogenesis of human tuberculosis is complex and remains poorly understood. It involves multi-interactions or evolutionary co-options between host factors and bacterial determinants for survival of the MTBC. Granuloma formation as a protection or survival mechanism in hosts by MTBC remains controversial. Additionally, MTBC species are capable of modulating host immune response and have adopted several mechanisms to evade from host immune attack in order to survive in humans. On the other hand, current diagnostic tools for human tuberculosis are inadequate and have several shortcomings. Numerous studies have suggested the potential of host biomarkers in early diagnosis of tuberculosis, in disease differentiation and in treatment monitoring. "Multi-omics" approaches provide holistic views to dissect the association of MTBC species with humans and offer great advantages in host biomarkers discovery. Thus, in this review, we seek to understand how the genetic variations in MTBC lead to species speciation with different pathogenicity. Furthermore, we also discuss how the host and bacterial players contribute to the pathogenesis of human tuberculosis. Lastly, we provide an overview of the journey of "omics" approaches in host biomarkers discovery in human tuberculosis and provide some interesting insights on the challenges and directions of "omics" approaches in host biomarkers innovation and clinical implementation.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.