Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Azami NAM, Perera D, Thayan R, AbuBakar S, Sam IC, Salleh MZ, et al.
    Int J Infect Dis, 2022 Dec;125:216-226.
    PMID: 36336246 DOI: 10.1016/j.ijid.2022.10.044
    OBJECTIVES: This study reported SARS-CoV-2 whole genome sequencing results from June 2021 to January 2022 from seven genome sequencing centers in Malaysia as part of the national surveillance program.

    METHODS: COVID-19 samples that tested positive by reverse transcription polymerase chain reaction and with cycle threshold values <30 were obtained throughout Malaysia. Sequencing of SARS-CoV-2 complete genomes was performed using Illumina, Oxford Nanopore, or Ion Torrent platforms. A total of 6163 SARS-CoV-2 complete genome sequences were generated over the surveillance period. All sequences were submitted to the Global Initiative on Sharing All Influenza Data database.

    RESULTS: From June 2021 to January 2022, Malaysia experienced the fourth wave of COVID-19 dominated by the Delta variant of concern, including the original B.1.617.2 lineage and descendant AY lineages. The B.1.617.2 lineage was identified as the early dominant circulating strain throughout the country but over time, was displaced by AY.59 and AY.79 lineages in Peninsular (west) Malaysia, and the AY.23 lineage in east Malaysia. In December 2021, pilgrims returning from Saudi Arabia facilitated the introduction and spread of the BA.1 lineage (Omicron variant of concern) in the country.

    CONCLUSION: The changing trends of circulating SARS-CoV-2 lineages were identified, with differences observed between west and east Malaysia. This initiative highlighted the importance of leveraging research expertise in the country to facilitate pandemic response and preparedness.

  2. Azlan A, Obeidat SM, Yunus MA, Azzam G
    Sci Rep, 2019 08 21;9(1):12147.
    PMID: 31434910 DOI: 10.1038/s41598-019-47506-9
    Long noncoding RNAs (lncRNAs) play diverse roles in biological processes. Aedes aegypti (Ae. aegypti), a blood-sucking mosquito, is the principal vector responsible for replication and transmission of arboviruses including dengue, Zika, and Chikungunya virus. Systematic identification and developmental characterisation of Ae. aegypti lncRNAs are still limited. We performed genome-wide identification of lncRNAs, followed by developmental profiling of lncRNA in Ae. aegypti. We identified a total of 4,689 novel lncRNA transcripts, of which 2,064, 2,076, and 549 were intergenic, intronic, and antisense respectively. Ae. aegypti lncRNAs share many characteristics with other species including low expression, low GC content, short in length, and low conservation. Besides, the expression of Ae. aegypti lncRNAs tend to be correlated with neighbouring and antisense protein-coding genes. A subset of lncRNAs shows evidence of maternal inheritance; hence, suggesting potential role of lncRNAs in early-stage embryos. Additionally, lncRNAs show higher tendency to be expressed in developmental and temporal specific manner. The results from this study provide foundation for future investigation on the function of Ae. aegypti lncRNAs.
  3. Azlan A, Halim MA, Azzam G
    Genomics, 2020 03;112(2):1273-1281.
    PMID: 31381967 DOI: 10.1016/j.ygeno.2019.07.016
    The free-living flatworm Macrostoma lignano (M. lignano) is an emerging model organism for aging and regeneration research. Long intergenic non-coding RNAs (lincRNAs) have important roles in many biological processes such as aging, stem cell maintenance and differentiation. However, to date, there is no systematic identification of lincRNAs in M. lignano. By using public RNA-seq data, we identified a total of 2547 lincRNA transcripts in M. lignano genome. We discovered that M. lignano lincRNAs shared many characteristics with other species such as shorter in length, lower GC content, and lower in expression compared to protein-coding genes. Unlike protein-coding genes, M. lignano lincRNAs showed higher tendency to be expressed in temporal and region-specific fashion. Additionally, co-expression network analysis and functional enrichment suggest that M. lignano lincRNAs have potential roles in regeneration. This study will provide important resources and pave the way for investigations on non-coding genes involved in aging and regeneration.
  4. Azlan A, Obeidat SM, Theva Das K, Yunus MA, Azzam G
    PLoS Negl Trop Dis, 2021 01;15(1):e0008351.
    PMID: 33481791 DOI: 10.1371/journal.pntd.0008351
    The Asian tiger mosquito, Aedes albopictus (Ae. albopictus), is an important vector that transmits arboviruses such as dengue (DENV), Zika (ZIKV) and Chikungunya virus (CHIKV). Long noncoding RNAs (lncRNAs) are known to regulate various biological processes. Knowledge on Ae. albopictus lncRNAs and their functional role in virus-host interactions are still limited. Here, we identified and characterized the lncRNAs in the genome of an arbovirus vector, Ae. albopictus, and evaluated their potential involvement in DENV and ZIKV infection. We used 148 public datasets, and identified a total of 10, 867 novel lncRNA transcripts, of which 5,809, 4,139, and 919 were intergenic, intronic and antisense respectively. The Ae. albopictus lncRNAs shared many characteristics with other species such as short length, low GC content, and low sequence conservation. RNA-sequencing of Ae. albopictus cells infected with DENV and ZIKV showed that the expression of lncRNAs was altered upon virus infection. Target prediction analysis revealed that Ae. albopictus lncRNAs may regulate the expression of genes involved in immunity and other metabolic and cellular processes. To verify the role of lncRNAs in virus infection, we generated mutations in lncRNA loci using CRISPR-Cas9, and discovered that two lncRNA loci mutations, namely XLOC_029733 (novel lncRNA transcript id: lncRNA_27639.2) and LOC115270134 (known lncRNA transcript id: XR_003899061.1) resulted in enhancement of DENV and ZIKV replication. The results presented here provide an important foundation for future studies of lncRNAs and their relationship with virus infection in Ae. albopictus.
  5. Azlan A, Halim MA, Mohamad F, Azzam G
    Insect Sci, 2021 Aug;28(4):917-928.
    PMID: 32621332 DOI: 10.1111/1744-7917.12847
    The Southern house mosquito, Culex quinquefasciatus (Cx. quinquefasciatus) is an important vector that transmit multiple diseases including West Nile encephalitis, Japanese encephalitis, St. Louis encephalitis and lymphatic filariasis. Long noncoding RNAs (lncRNAs) involve in many biological processes such as development, infection, and virus-host interaction. However, there is no systematic identification and characterization of lncRNAs in Cx. quinquefasciatus. Here, we report the first lncRNA identification in Cx. quinquefasciatus. By using 31 public RNA-seq datasets, a total of 4763 novel lncRNA transcripts were identified, of which 3591, 569, and 603 were intergenic, intronic, and antisense respectively. Examination of genomic features revealed that Cx. quinquefasciatus shared similar characteristics with other species such as short in length, low GC content, low sequence conservation, and low coding potential. Furthermore, compared to protein-coding genes, Cx. quinquefasciatus lncRNAs had lower expression values, and tended to be expressed in temporally specific fashion. In addition, weighted correlation network and functional annotation analyses showed that lncRNAs may have roles in blood meal acquisition of adult female Cx. quinquefasciatus mosquitoes. This study presents the first systematic identification and analysis of Cx. quinquefasciatus lncRNAs and their association with blood feeding. Results generated from this study will facilitate future investigation on the function of Cx. quinquefasciatus lncRNAs.
  6. Azlan A, Dzaki N, Azzam G
    J Genet Genomics, 2016 08 20;43(8):481-94.
    PMID: 27569398 DOI: 10.1016/j.jgg.2016.06.002
    The discovery of small non-coding RNAs - microRNA (miRNA), short interfering RNA (siRNA) and PIWI-interacting RNA (piRNA) - represents one of the most exciting frontiers in biology specifically on the mechanism of gene regulation. In order to execute their functions, these small RNAs require physical interactions with their protein partners, the Argonaute (AGO) family proteins. Over the years, numerous studies have made tremendous progress on understanding the roles of AGO in gene silencing in various organisms. In this review, we summarize recent progress of AGO-mediated gene silencing and other cellular processes in which AGO proteins have been implicated with a particular focus on progress made in flies, humans and other model organisms as compliment.
  7. Bajgiran M, Azlan A, Shamsuddin S, Azzam G, Halim MA
    Data Brief, 2021 Oct;38:107413.
    PMID: 34632013 DOI: 10.1016/j.dib.2021.107413
    Ageing is defined as gradual decline of physiological, cellular and molecular state of an organism with time. The age-associated cell dysfunctions usually cause chronic diseases such as diabetes, cancers and other age-related diseases. Many of the genes and pathways involved in ageing are conserved in different species. These genes and pathways have been categorised into nine cellular and molecular hallmarks, namely, genomic instability, telomere attrition, loss of proteostasis, mitochondrial dysfunction, epigenetic alterations, deregulated nutrient sensing, stem cell exhaustion, cellular senescence and altered intercellular communication. Despite countless studies on ageing, the molecular mechanism of ageing is poorly understood. Here, we performed genome wide transcriptome mapping of ageing process in D. melanogaster. In which, transcriptomic analysis conducted on the 1 day and 60 days flies. Illumina Hiseq platform were used to generate raw data. Afterwards, further analysis including differential expression analysis, GO classification and KEGG pathway enrichment analysis were performed. The raw data were uploaded to SRA database and the BioProject ID is PRJNA718442. These data provide the basis for future research in order to discover the genes and pathways involved in ageing.
  8. Dzaki N, Ramli KN, Azlan A, Ishak IH, Azzam G
    Sci Rep, 2017 03 16;7:43618.
    PMID: 28300076 DOI: 10.1038/srep43618
    The mosquito Aedes aegypti (Ae. aegypti) is the most notorious vector of illness-causing viruses such as Dengue, Chikugunya, and Zika. Although numerous genetic expression studies utilizing quantitative real-time PCR (qPCR) have been conducted with regards to Ae. aegypti, a panel of genes to be used suitably as references for the purpose of expression-level normalization within this epidemiologically important insect is presently lacking. Here, the usability of seven widely-utilized reference genes i.e. actin (ACT), eukaryotic elongation factor 1 alpha (eEF1α), alpha tubulin (α-tubulin), ribosomal proteins L8, L32 and S17 (RPL8, RPL32 and RPS17), and glyceraldeyde 3-phosphate dehydrogenase (GAPDH) were investigated. Expression patterns of the reference genes were observed in sixteen pre-determined developmental stages and in cell culture. Gene stability was inferred from qPCR data through three freely available algorithms i.e. BestKeeper, geNorm, and NormFinder. The consensus rankings generated from stability values provided by these programs suggest a combination of at least two genes for normalization. ACT and RPS17 are the most dependably expressed reference genes and therefore, we propose an ACT/RPS17 combination for normalization in all Ae. aegypti derived samples. GAPDH performed least desirably, and is thus not a recommended reference gene. This study emphasizes the importance of validating reference genes in Ae. aegypti for qPCR based research.
  9. Dzaki N, Wahab W, Azlan A, Azzam G
    Biochem Biophys Res Commun, 2018 10 20;505(1):106-112.
    PMID: 30241946 DOI: 10.1016/j.bbrc.2018.09.074
    CTP Synthase (CTPS) is a metabolic enzyme that is recognized as a catalyst for nucleotide, phospholipid and sialoglycoprotein production. Though the structural characteristics and regulatory mechanisms of CTPS are well-understood, little is known regarding the extent of its involvement during the early developmental stages of vertebrates. Zebrafish carries two CTPS genes, annotated as ctps1a and ctps1b. Phylogenetic analyses show that both genes had diverged from homologues in the ancestral Actinopterygii, Oreochromis niloticus. Conservation of common CTPS-catalytic regions further establishes that both proteins are likely to be functionally similar to hsaCTPS. Here, we show that ctps1a is more critical throughout the initial period of embryonic development than ctps1b. The effects of concurrent partial knockdown are dependent on ctps1a vs ctps1b dosage ratios. When these are equally attenuated, abnormal phenotypes acquired prior to the pharyngula period disappear in hatchlings (48hpf); however, if either gene is more attenuated than the other, these only become more pronounced in advanced stages. Generally, disruption to normal ctps1a or ctps1b expression levels by morpholinos culminates in the distortion of the early spinal column as well as multiple-tissue oedema. Other effects include slower growth rates, increased mortality rates and impaired structural formation of the young fish's extremities. Embryos grown in DON, a glutamine-analogue drug and CTPS antagonist, also exhibit similar characteristics, thus strengthening the validity of the morpholino-induced phenotypes observed. Together, our results demonstrate the importance of CTPS for the development of zebrafish embryos, as well as a disparity in activity and overall importance amongst isozymes.
  10. Dzaki N, Azzam G
    PLoS One, 2018;13(3):e0194664.
    PMID: 29554153 DOI: 10.1371/journal.pone.0194664
    Members of the Aedes genus of mosquitoes are widely recognized as vectors of viral diseases. Ae.albopictus is its most invasive species, and are known to carry viruses such as Dengue, Chikugunya and Zika. Its emerging importance puts Ae.albopictus on the forefront of genetic interaction and evolution studies. However, a panel of suitable reference genes specific for this insect is as of now undescribed. Nine reference genes, namely ACT, eEF1-γ, eIF2α, PP2A, RPL32, RPS17, PGK1, ILK and STK were evaluated. Expression patterns of the candidate reference genes were observed in a total of seventeen sample types, separated by stage of development and age. Gene stability was inferred from obtained quantification data through three widely cited evaluation algorithms i.e. BestKeeper, geNorm, and NormFinder. No single gene showed a satisfactory degree of stability throughout all developmental stages. Therefore, we propose combinations of PGK and ILK for early embryos; RPL32 and RPS17 for late embryos, all four larval instars, and pupae samples; eEF1-γ with STK for adult males; eEF1-γ with RPS17 for non-blood fed females; and eEF1-γ with eIF2α for both blood-fed females and cell culture. The results from this study should be able to provide a more informed selection of normalizing genes during qPCR in Ae.albopictus.
  11. Dzaki N, Woo WK, Thangadurai S, Azzam G
    Exp Cell Res, 2019 12 15;385(2):111688.
    PMID: 31678212 DOI: 10.1016/j.yexcr.2019.111688
    CTPsyn is a crucial metabolic enzyme which synthesizes CTP nucleotides. It has the extraordinary ability to compartmentalize into filaments termed cytoophidia. Though the structure is evolutionarily conserved across kingdoms, the mechanisms behind their formation remain unknown. MicroRNAs (miRNAs) are short single-stranded RNA capable of directing mRNA silencing and degradation. D. melanogaster has a high total gene count to miRNA gene number ratio, alluding to the possibility that CTPsyn too may come under their regulation. A thorough miRNA overexpression involving 123 miRNAs was conducted, followed by CTPsyn-specific staining upon cytoophidia-rich egg chambers. This revealed a small group of candidates which confer either a lengthening or truncating effect on cytoophidia, suggesting they may play a role in regulating CTPsyn. MiR-975 and miR-1014 are both cytoophidia-elongating, whereas miR-190 and miR-932 are cytoophidia-shortening. Though target prediction shows that miR-975 and miR-932 do indeed have binding sites on CTPsyn mRNA, in vitro assays instead revealed a low probability of this being true, instead indicating that the effects asserted by overexpressed miRNAs indirectly reach CTPsyn and its cytoophidia through the actions of middling elements. In silico target prediction and qPCR quantification indicated that, at least for miR-932 and miR-1014, these undetermined elements may be players in fat metabolism. This is the first study to thoroughly investigate miRNAs in connection to CTPsyn expression and activity in any species. The findings presented could serve as a basis for further queries into not only the fundamental aspects of the enzyme's regulation, but may uncover new facets of closely related pathways as well.
  12. Halim MA, Tan FHP, Azlan A, Rasyid II, Rosli N, Shamsuddin S, et al.
    Malays J Med Sci, 2020 May;27(3):7-19.
    PMID: 32684802 MyJurnal DOI: 10.21315/mjms2020.27.3.2
    Ageing is a phenomenon where the accumulation of all the stresses that alter the functions of living organisms, halter them from maintaining their physiological balance and eventually lead to death. The emergence of epigenetic tremendously contributed to the knowledge of ageing. Epigenetic changes in cells or tissues like deoxyribonucleic acid (DNA) methylation, modification of histone proteins, transcriptional modification and also the involvement of non-coding DNA has been documented to be associated with ageing. In order to study ageing, scientists have taken advantage of several potential organisms to aid them in their study. Drosophila melanogaster has been an essential model in establishing current understanding of the mechanism of ageing as they possess several advantages over other competitors like having homologues to more than 75% of human disease genes, having 50% of Drosophila genes are homologues to human genes and most importantly they are genetically amenable. Here, we would like to summarise the extant knowledge about ageing and epigenetic process and the role of Drosophila as an ideal model to study epigenetics in association with ageing process.
  13. Hor YY, Lew LC, Jaafar MH, Lau AS, Ong JS, Kato T, et al.
    Pharmacol Res, 2019 08;146:104312.
    PMID: 31207344 DOI: 10.1016/j.phrs.2019.104312
    Aging is closely associated with altered gut function and composition, in which elderly were reported with reduced gut microbiota diversity and increased incidence of age-related diseases. Probiotics have been shown to exert beneficial health-promoting effects through modulation of intestinal microflora biodiversity, thus the effects of probiotics administration on D-galactose (D-gal) senescence-induced rat were evaluated based on the changes in gut microbiota and metabolomic profiles. Upon senescence induction, the ratio of Firmicutes/ Bacteroidetes was significantly lowered, while treatment with Lactobacillus helveticus OFS 1515 and L. fermentum DR9 increased the ratio at the phylum level (P 
  14. Hor YY, Ooi CH, Lew LC, Jaafar MH, Lau AS, Lee BK, et al.
    J Appl Microbiol, 2021 Apr;130(4):1307-1322.
    PMID: 32638482 DOI: 10.1111/jam.14776
    AIM: The aim of this study was to evaluate the molecular mechanisms of Lactobacillus strains in improving ageing of the musculoskeletal system.

    METHODS AND RESULTS: The anti-ageing mechanism of three probiotics strains Lactobacillus fermentum DR9, Lactobacillus paracasei OFS 0291 and L. helveticus OFS 1515 were evaluated on gastrocnemius muscle and tibia of d-galactose-induced ageing rats. Upon senescence induction, aged rats demonstrated reduced antioxidative genes CAT and SOD expression in both bone and muscle compared to the young rats (P 

  15. Lew LC, Hor YY, Jaafar MH, Lau AS, Lee BK, Chuah LO, et al.
    Int J Mol Sci, 2020 Aug 16;21(16).
    PMID: 32824277 DOI: 10.3390/ijms21165872
    In this study, we hypothesized that different strains of Lactobacillus can alleviate hyperlipidemia and liver steatosis via activation of 5' adenosine monophosphate-activated protein kinase (AMPK), an enzyme that is involved in cellular energy homeostasis, in aged rats. Male rats were fed with a high-fat diet (HFD) and injected with D-galactose daily over 12 weeks to induce aging. Treatments included (n = 6) (i) normal diet (ND), (ii) HFD, (iii) HFD-statin (lovastatin 2 mg/kg/day), (iv) HFD-Lactobacillus fermentum DR9 (10 log CFU/day), (v) HFD-Lactobacillus plantarum DR7 (10 log CFU/day), and (vi) HFD-Lactobacillus reuteri 8513d (10 log CFU/day). Rats administered with statin, DR9, and 8513d reduced serum total cholesterol levels after eight weeks (p < 0.05), while the administration of DR7 reduced serum triglycerides level after 12 weeks (p < 0.05) as compared to the HFD control. A more prominent effect was observed from the administration of DR7, where positive effects were observed, ranging from hepatic gene expressions to liver histology as compared to the control (p < 0.05); downregulation of hepatic lipid synthesis and β-oxidation gene stearoyl-CoA desaturase 1 (SCD1), upregulation of hepatic sterol excretion genes of ATP-binding cassette subfamily G member 5 and 8 (ABCG5 and ABCG8), lesser degree of liver steatosis, and upregulation of hepatic energy metabolisms genes AMPKα1 and AMPKα2. Taken altogether, this study illustrated that the administration of selected Lactobacillus strains led to improved lipid profiles via activation of energy and lipid metabolisms, suggesting the potentials of Lactobacillus as a promising natural intervention for alleviation of cardiovascular and liver diseases.
  16. Lew LC, Hor YY, Jaafar MH, Lau ASY, Ong JS, Chuah LO, et al.
    Benef Microbes, 2019 Dec 09;10(8):883-892.
    PMID: 31965837 DOI: 10.3920/BM2019.0058
    This study aimed to evaluate the anti-ageing effects of different strains of lactobacilli putative probiotics on an ageing rat model as induced by D-galactose and a high fat diet. Male Sprague-Dawley rats were fed with high fat diet (54% kcal fat) and injected with D-galactose daily for 12 weeks to induce ageing. The effects of putative probiotic strains on age-related impairment such as telomere length, plasma lipid peroxidation, hepatic 5'adenosine monophosphate-activated protein kinase (AMPK) expression, as well as endurance performance were evaluated. Administration of statin, Lactobacillus plantarum DR7 (LP-DR7), Lactobacillus fermentum DR9 (LF-DR9), and Lactobacillus reuteri 8513d (LR-8513d) significantly reduced the shortening of telomere and increased the expression of AMPK subunit-α1 (P<0.05). Plasma lipid peroxidation was lower (P<0.05) in groups administered with statin and LF-DR9 as compared to the control. AMPK subunit-α2 was elevated in rats administered with LP-DR7 as compared to the control (P<0.05). Using an in vivo ageing rat model, the current study has illustrated the potentials of lactobacilli putative probiotics in alleviation of age-related impairment in a strain-dependent manner.
  17. Liu G, Tan FH, Lau SA, Jaafar MH, Chung FY, Azzam G, et al.
    J Appl Microbiol, 2020 Jul 08.
    PMID: 32640111 DOI: 10.1111/jam.14773
    AIMS: To utilize transgenic GMR-Aβ42 Drosophila melanogaster as a model to evaluate potential Alzheimer's disease (AD)-reversal effects via the administration of lactic acid bacteria (LAB) strains, and associations of LAB with changes in gut microbiota profiles.

    METHODS AND RESULTS: Wild-type flies (Oregon-R) were crossed with glass multimer reporter-GAL4 (GMR-GAL4) to produce GMR-OreR (Control), while UAS-Aβ42 (#33769) were crossed with GMR-GAL4 to produce transgenic Drosophila line that expressed Aβ42 (GMR-Aβ42). Feed containing seven different LAB strains (Lactobacillus paracasei 0291, Lactobacillus helveticus 1515, Lactobacillus reuteri 30242, L. reuteri 8513d, Lactobacillus fermentum 8312, Lactobacillus casei Y, Lactobacillus sakei Probio65) were given to GMR-Aβ42 respectively, while feed without LAB strains were given to control and transgenic GMR-Aβ42.nf Drosophila lines. The morphology of the eyes was viewed with scanning electron microscopy (SEM). The changes in gut microbiota profiles associated with LAB were analysed using 16s high throughput sequencing. Malformation of eye structures in transgenic GMR-Aβ42 Drosophila were reversed upon the administration of LAB strains, with more prevalent effects from L. sakei Probio65 and L. paracasei 0291. The GMR-Aβ42.nf group showed dominance of Wolbachia in the gut, a genus that was almost absent in the normal control group (P 

  18. Manickam S, Thangadurai S, Azlan A, Amin Z, Azzam G, Halim MA
    Data Brief, 2022 Dec;45:108748.
    PMID: 36426000 DOI: 10.1016/j.dib.2022.108748
    MicroRNAs (miRNAs) are short non-coding single-stranded RNAs with approximately 22 nucleotides in length that negatively regulate the mRNA translation of a target gene. MiR-2b-1 belongs to the largest miR-2 family in Drosophila melanogaster with 8 members and this miRNA family is conserved in invertebrates. miRNAs play key roles in gene regulation, cell proliferation, cell death, cell differentiation and cell developmental homeostasis in multicellular organisms. Its role in various human diseases is continuously being studied. miRNAs also found out to be crucial in maintaining stem cell niche in D. melanogaster gonads. We have identified that ectopic overexpression of miR-2b-1 of D. melanogaster causes testicular bulging (a tumour like phenotype) in 3-5 days old adult flies. Hence, we have performed a transcriptomic (RNA-seq) analysis to understand the role of miR-2b-1 in the development, maintenance, and differentiation of D. melanogaster adult testis stem cells. Data are available from GEO (accession number GSE211399).
  19. Tan FHP, Liu G, Lau SA, Jaafar MH, Park YH, Azzam G, et al.
    Benef Microbes, 2020 Feb 19;11(1):79-89.
    PMID: 32066253 DOI: 10.3920/BM2019.0086
    Alzheimer's disease (AD) is a progressive disease and one of the most common forms of neurodegenerative disorders. Emerging evidence is supporting the use of various strategies that modulate gut microbiota to exert neurological and psychological changes. This includes the utilisation of probiotics as a natural and dietary intervention for brain health. Here, we showed the potential AD-reversal effects of Lactobacillus probiotics through feeding to our Drosophila melanogaster AD model. The administration of Lactobacillus strains was able to rescue the rough eye phenotype (REP) seen in AD-induced Drosophila, with a more prominent effect observed upon the administration of Lactobacillus plantarum DR7 (DR7). Furthermore, we analysed the gut microbiota of the AD-induced Drosophila and found elevated levels of Wolbachia. The administration of DR7 restored the gut microbiota diversity of AD-induced Drosophila with a significant reduction in Wolbachia's relative abundance, accompanied by an increase of Stenotrophomonas and Acetobacter. Through functional predictive analyses, Wolbachia was predicted to be positively correlated with neurodegenerative disorders, such as Parkinson's, Huntington's and Alzheimer's diseases, while Stenotrophomonas was negatively correlated with these neurodegenerative disorders. Altogether, our data exhibited DR7's ability to ameliorate the AD effects in our AD-induced Drosophila. Thus, we propose that Wolbachia be used as a potential biomarker for AD.
  20. Tan FHP, Hadri NAB, Najimudin N, Watanabe N, Azzam G
    Geriatr Gerontol Int, 2021 Dec;21(12):1125-1130.
    PMID: 34699118 DOI: 10.1111/ggi.14296
    AIM: Alzheimer's disease (AD) is the most pervasive neurodegenerative disorder in societies globally. Till now, the mechanism behind this disease is still equivocal. Amyloid-beta42 protein (Aβ42), the most toxic and aggressive Aβ species, is the main focus of this study. The naturally occurring ethyl caffeate (EC) is associated with various medicinal properties. Here, EC was tested for its protective properties against Aβ42's toxic effects.

    METHODS: As treatment of Aβ42 has been shown to cause neuronal cell death, EC was first screened with Aβ42-incubated PC12 neuronal cells. Next, the compound was tested on the Drosophila melanogaster AD model using the rough eye phenotype assay, lifespan assay and negative geotaxis assay.

    RESULTS: EC ameliorated PC12 cells from cell death linked to Aβ42 exposure. Using Drosophila expressing human Aβ42, feeding of EC was able to partially rescue the rough eye phenotype, lengthen the lifespan of AD Drosophila and enhanced the mobility of middle-aged AD Drosophila.

    CONCLUSION: Overall, the results of this study showed that EC might possess therapeutic properties for AD. Geriatr Gerontol Int 2021; 21: 1125-1130.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links