Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Subramaniam, Sreeramanan, Balasubramaniam, Vinod, Poobathy, Ranjetta, Sreenivasan, Sasidharan, Rathinam, Xavier
    Trop Life Sci Res, 2009;20(1):-.
    MyJurnal
    An early step in the Agrobacterium-mediated transformation of Phalaenopsis violacea orchid was investigated to elucidate the plant-bacterium interaction. Directed movement in response to chemical attractants is of crucial importance to Agrobacterium tumefaciens strains. Chemotaxis of A. tumefaciens strains (EHA 101 and 105) towards wounded orchid tissues has been studied by using swarm agar plates. The results obtained indicate a minor role for chemotaxis in determining host specificity and suggest that it could not be responsible for the absence of tumourigenesis in P. violacea orchid under natural conditions. The spectrometric GUS and green fluorescent protein (GFP) assays provided information on the amount of inoculated A. tumefaciens that effectively bound to various orchid tissues. It can be concluded that, at least during the two early steps of interaction, A. tumefaciens appears to be compatible with P. violacea, indicating a potential basis for genetic transformation.
  2. Kalam N, Balasubramaniam VRMT
    Postgrad Med J, 2024 Jul 18;100(1186):539-554.
    PMID: 38493312 DOI: 10.1093/postmj/qgae030
    The microbes in the gut are crucial for maintaining the body's immune system and overall gut health. However, it is not fully understood how an unstable gut environment can lead to more severe cases of SARS-CoV-2 infection. The gut microbiota also plays a role in the gut-brain axis and interacts with the central nervous system through metabolic and neuroendocrine pathways. The interaction between the microbiota and the host's body involves hormonal, immune, and neural pathways, and any disruption in the balance of gut bacteria can lead to dysbiosis, which contributes to pathogen growth. In this context, we discuss how dysbiosis could contribute to comorbidities that increase susceptibility to SARS-CoV-2. Probiotics and fecal microbiota transplantation have successfully treated infectious and non-infectious inflammatory-related diseases, the most common comorbidities. These treatments could be adjuvant therapies for COVID-19 infection by restoring gut homeostasis and balancing the gut microbiota.
  3. Kalam N, Balasubramaniam VRMT
    Influenza Other Respir Viruses, 2024 Dec;18(12):e70064.
    PMID: 39702696 DOI: 10.1111/irv.70064
    Enterovirus-D68 (EV-D68) was first identified in 1962 in pediatric patients with acute respiratory conditions in California, USA (US). From the 1970s to 2005, EV-D68 was underestimated due to limited data and serotyping methods. In 2014, the United States experienced outbreaks of acute flaccid myelitis (AFM) in children EV-D68 positive. WIN-like compounds (pleconaril, pocapavir, and vapendavir) bind to the virus capsid and have been tested against various enteroviruses (EVs) in clinical trials. However, these compounds encountered issues with resistance and adverse effects, which impeded their approval by the Food and Drug Administration (FDA). Presently, the medical field lacks FDA-approved antiviral treatments or vaccines for EV-D68. Ongoing research efforts are dedicated to identifying viable therapeutics to address EV-D68 infections. This review explores the current advancements in antiviral therapies and potential therapeutics to mitigate the significant impact of EV-D68 infection control.
  4. Su KY, Balasubramaniam VRMT
    Front Microbiol, 2019;10:2715.
    PMID: 31824472 DOI: 10.3389/fmicb.2019.02715
    The ability of self-replicating oncolytic viruses (OVs) to preferentially infect and lyse cancer cells while stimulating anti-tumor immunity of the host strongly indicates its value as a new field of cancer therapeutics to be further explored. The emergence of Zika virus (ZIKV) as a global health threat due to its recent outbreak in Brazil has caught the attention of the scientific community and led to the discovery of its oncolytic potential for the treatment of glioblastoma multiforme (GBM), the most common and fatal brain tumor with poor prognosis. Herein, we evaluate the neurotropism of ZIKV relative to the receptor tyrosine kinase AXL and its ligand Gas6 in viral entry and the RNA-binding protein Musashi-1 (MSI1) in replication which are also overexpressed in GBM, suggesting its potential for specific targeting of the tumor. Additionally, this review discusses genetic modifications performed to enhance safety and efficacy of ZIKV as well as speculates future directions for the OV therapy.
  5. Tan LY, Komarasamy TV, Rmt Balasubramaniam V
    Front Immunol, 2021;12:742941.
    PMID: 34659238 DOI: 10.3389/fimmu.2021.742941
    The coronavirus disease-19 (COVID-19) elicited by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused devastating health, economic and social impact worldwide. Its clinical spectrum ranges from asymptomatic to respiratory failure and multi-organ failure or death. The pathogenesis of SARS-CoV-2 infection is attributed to a complex interplay between virus and host immune response. It involves activation of multiple inflammatory pathways leading to hyperinflammation and cytokine storm, resulting in tissue damage, acute respiratory distress syndrome (ARDS) and multi-organ failure. Accumulating evidence has raised concern over the long-term health effects of COVID-19. Importantly, the neuroinvasive potential of SARS-CoV-2 may have devastating consequences in the brain. This review provides a conceptual framework on how the virus tricks the host immune system to induce infection and cause severe disease. We also explore the key differences between mild and severe COVID-19 and its short- and long-term effects, particularly on the human brain.
  6. Hooi YT, Balasubramaniam VRMT
    Pathology, 2023 Dec;55(7):907-916.
    PMID: 37852802 DOI: 10.1016/j.pathol.2023.08.007
    Enterovirus D68 (EV-D68) is one of hundreds of non-polio enteroviruses that typically cause cold-like respiratory illness. The first EV-D68 outbreak in the United States in 2014 aroused widespread concern among the public and health authorities. The infection was found to be associated with increased surveillance of acute flaccid myelitis, a neurological condition that causes limb paralysis in conjunction with spinal cord inflammation. In vitro studies utilising two-dimensional (2D) and three-dimensional (3D) culture systems have been employed to elucidate the pathogenic mechanism of EV-D68. Various animal models have also been developed to investigate viral tropism and distribution, pathogenesis, and immune responses during EV-D68 infection. EV-D68 infections have primarily been investigated in respiratory, intestinal and neural cell lines/tissues, as well as in small-size immunocompetent rodent models that were limited to a young age. Some studies have implemented strategies to overcome the barriers by using immunodeficient mice or virus adaptation. Although the existing models may not fully recapitulate both respiratory and neurological disease observed in human EV-D68 infection, they have been valuable for studying pathogenesis and evaluating potential vaccine or therapeutic candidates. In this review, we summarise the methodologies and findings from each experimental model and discuss their applications and limitations.
  7. Tham HW, Balasubramaniam V, Ooi MK, Chew MF
    Front Microbiol, 2018;9:1040.
    PMID: 29875751 DOI: 10.3389/fmicb.2018.01040
    Zika virus (ZIKV) has emerged as a new global health threat. Since its first discovery in Zika forest in Uganda, this virus has been isolated from several mosquito species, including Aedes aegypti and Aedes albopictus. The geographical distribution of these mosquito species across tropical and subtropical regions has led to several outbreaks, including the recent pandemic in Brazil, followed by the Pacific islands and other areas of North and South America. This has gained attention of the scientific community to elucidate the epidemiology and transmission of ZIKV. Despite its strong attention on clinical aspects for healthcare professionals, the relationships between ZIKV and its principal vectors, A. aegypti and A. albopictus, have not gained substantial interest in the scientific research community. As such, this review aims to summarize the current knowledge on ZIKV tropism and some important mechanisms which may be employed by the virus for effective strategies on viral survival in mosquitoes. In addition, this review identifies the areas of research that should be placed attention to, for which to be exploited for novel mosquito control strategies.
  8. Tham HW, Balasubramaniam VR, Chew MF, Ahmad H, Hassan SS
    J Infect Dev Ctries, 2015 Dec 30;9(12):1338-49.
    PMID: 26719940 DOI: 10.3855/jidc.6422
    INTRODUCTION: Dengue virus (DENV) is principally transmitted by the Aedes aegypti mosquito. To date, mosquito population control remains the key strategy for reducing the continuing spread of DENV. The focus on the development of new vector control strategies through an understanding of the mosquito-virus relationship is essential, especially targeting the midgut, which is the first mosquito organ exposed to DENV infection.
    METHODOLOGY: A cDNA library derived from female adult A. aegypti mosquito midgut cells was established using the switching mechanism at the 5' end of the RNA transcript (SMART), in combination with a highly potent recombination machinery of Saccharomyces cerevisiae. Gal4-based yeast two-hybrid (Y2H) assays were performed against DENV-2 proteins (E, prM, M, and NS1). Mammalian two-hybrid (M2H) and double immunofluorescence assays (IFA) were conducted to validate the authenticity of the three selected interactions.
    RESULTS: The cDNA library was of good quality based on its transformation efficiency, cell density, titer, and the percentage of insert size. A total of 36 midgut proteins interacting with DENV-2 proteins were identified, some involved in nucleic acid transcription, oxidoreductase activity, peptidase activity, and ion binding. Positive outcomes were obtained from the three selected interactions validated using M2H and double IFA assays.
    CONCLUSIONS: The identified proteins have different biological activities that may aid in the virus replication pathway. Therefore, the midgut cDNA library is a valuable tool for identifying DENV-2 interacting proteins. The positive outcomes of the three selected proteins validated supported the quality of the cDNA library and the robustness of the Y2H mechanisms.
  9. Tham HW, Balasubramaniam VR, Tejo BA, Ahmad H, Hassan SS
    Viruses, 2014 Dec;6(12):5028-46.
    PMID: 25521592 DOI: 10.3390/v6125028
    Aedes aegypti is a principal vector responsible for the transmission of dengue viruses (DENV). To date, vector control remains the key option for dengue disease management. To develop new vector control strategies, a more comprehensive understanding of the biological interactions between DENV and Ae. aegypti is required. In this study, a cDNA library derived from the midgut of female adult Ae. aegypti was used in yeast two-hybrid (Y2H) screenings against DENV2 envelope (E) protein. Among the many interacting proteins identified, carboxypeptidase B1 (CPB1) was selected, and its biological interaction with E protein in Ae. aegypti primary midgut cells was further validated. Our double immunofluorescent assay showed that CPB1-E interaction occurred in the endoplasmic reticulum (ER) of the Ae. aegypti primary midgut cells. Overexpression of CPB1 in mosquito cells resulted in intracellular DENV2 genomic RNA or virus particle accumulation, with a lower amount of virus release. Therefore, we postulated that in Ae. aegypti midgut cells, CPB1 binds to the E protein deposited on the ER intraluminal membranes and inhibits DENV2 RNA encapsulation, thus inhibiting budding from the ER, and may interfere with immature virus transportation to the trans-Golgi network.
  10. Balasubramaniam VR, Hong Wai T, Ario Tejo B, Omar AR, Syed Hassan S
    PLoS One, 2013;8(9):e72429.
    PMID: 24073193 DOI: 10.1371/journal.pone.0072429
    We constructed a novel chicken (Gallus gallus) lung cDNA library fused inside yeast acting domain vector (pGADT7). Using yeast two-hybrid screening with highly pathogenic avian influenza (HPAI) nucleoprotein (NP) from the strain (A/chicken/Malaysia/5858/2004(H5N1)) as bait, and the Gallus gallus lung cDNA library as prey, a novel interaction between the Gallus gallus cellular RNA export adaptor protein Aly/REF and the viral NP was identified. This interaction was confirmed and validated with mammalian two hybrid studies and co-immunoprecipitation assay. Cellular localization studies using confocal microscopy showed that NP and Aly/REF co-localize primarily in the nucleus. Further investigations by mammalian two hybrid studies into the binding of NP of other subtypes of influenza virus such as the swine A/New Jersey/1976/H1N1 and pandemic A/Malaysia/854/2009(H1N1) to human Aly/REF, also showed that the NP of these viruses interacts with human Aly/REF. Our findings are also supported by docking studies which showed tight and favorable binding between H5N1 NP and human Aly/REF, using crystal structures from Protein Data Bank. siRNA knockdown of Aly/REF had little effect on the export of HPAI NP and other viral RNA as it showed no significant reduction in virus titer. However, UAP56, another component of the TREX complex, which recruits Aly/REF to mRNA was found to interact even better with H5N1 NP through molecular docking studies. Both these proteins also co-localizes in the nucleus at early infection similar to Aly/REF. Intriguingly, knockdown of UAP56 in A549 infected cells shows significant reduction in viral titer (close to 10 fold reduction). Conclusively, our study have opened new avenues for research of other cellular RNA export adaptors crucial in aiding viral RNA export such as the SRSF3, 9G8 and ASF/SF2 that may play role in influenza virus RNA nucleocytoplasmic transport.
  11. Balasubramaniam VR, Wai TH, Omar AR, Othman I, Hassan SS
    Virol J, 2012;9:53.
    PMID: 22361110 DOI: 10.1186/1743-422X-9-53
    Highly-pathogenic avian influenza (HPAI) H5N1 and Newcastle disease (ND) viruses are the two most important poultry viruses in the world, with the ability to cause classic central nervous system dysfunction in poultry and migratory birds. To elucidate the mechanisms of neurovirulence caused by these viruses, a preliminary study was design to analyze host's cellular responses during infections of these viruses.
  12. Balasubramaniam VR, Hassan SS, Omar AR, Mohamed M, Noor SM, Mohamed R, et al.
    Virol J, 2011;8:196.
    PMID: 21529348 DOI: 10.1186/1743-422X-8-196
    Highly pathogenic Avian Influenza (HPAI) virus is able to infect many hosts and the virus replicates in high levels in the respiratory tract inducing severe lung lesions. The pathogenesis of the disease is actually the outcome of the infection as determined by complex host-virus interactions involving the functional kinetics of large numbers of participating genes. Understanding the genes and proteins involved in host cellular responses are therefore, critical for the elucidation of the mechanisms of infection.
  13. Kunasegaran T, Balasubramaniam VRMT, Arasoo VJT, Palanisamy UD, Ramadas A
    PMID: 33572656 DOI: 10.3390/ijerph18031272
    A rapid increase in the prevalence of gestational diabetes mellitus (GDM) has been associated with various factors such as urbanization, lifestyle changes, adverse hyperglycemic intrauterine environment, and the resulting epigenetic changes. Despite this, the burden of GDM has not been well-assessed in Southeast Asia. We comprehensively reviewed published Southeast Asian studies to identify the current research trend in GDM in this region. Joanna Briggs Institute's methodology was used to guide the scoping review. The synthesis of literature findings demonstrates almost comparable clinical evidence in terms of risk factors and complications, challenges presented in diagnosing GDM, and its disease management, given the similarities of the underlying population characteristics in Southeast Asia. Evidence suggests that a large proportion of GDM risk in women may be preventable by lifestyle modifications. However, the GDM burden across countries is expected to rise, given the heterogeneity in screening approaches and diagnostic criteria, mainly influenced by economic status. There is an urgent need for concerted efforts by government and nongovernmental sectors to implement national programs to prevent, manage, and monitor the disease.
  14. Arulsamy A, Tan QY, Balasubramaniam V, O'Brien TJ, Shaikh MF
    ACS Chem Neurosci, 2020 Nov 04;11(21):3488-3498.
    PMID: 33064448 DOI: 10.1021/acschemneuro.0c00431
    Dysbiosis of gut microbiota may lead to a range of diseases including neurological disorders. Thus, it is hypothesized that regulation of the intestinal microbiota may prevent or treat epilepsy. The purpose of this systematic review is to evaluate the evidence investigating the relationship between gut microbiota and epilepsy and possible interventions. A systematic review of the literature was done on four databases (PubMed, Scopus, EMBASE, and Web of Science). Study selection was restricted to original research articles while following the PRISMA guidelines. Six studies were selected. These studies cohesively support the interaction between gut microbiota and epileptic seizures. Gut microbiota analysis identified increases in Firmicutes, Proteobacteria, Verrucomicrobia, and Fusobacteria with decreases in Bacteroidetes and Actinobacteria in epileptic patients. Ketogenic diet, probiotics, and fecal microbiota transplantation (FMT) improved the dysbiosis of the gut microbiota and seizure activity. However, the studies either had a small sample size, lack of subject variability, or short study or follow-up period, which may question their reliability. Nevertheless, these limited studies conclusively suggest that gut microbiota diversity and dysbiosis may be involved in the pathology of epilepsy. Future studies providing more reliable and in depth insight into the gut microbial community will spark promising alternative therapies to current epilepsy treatment.
  15. Paudel YN, Angelopoulou E, Piperi C, Balasubramaniam VRMT, Othman I, Shaikh MF
    Eur J Pharmacol, 2019 Sep 05;858:172487.
    PMID: 31229535 DOI: 10.1016/j.ejphar.2019.172487
    High mobility group box 1 (HMGB1) is a ubiquitous protein, released passively by necrotic tissues or secreted actively by stressed cells. Extracellular HMGB1 is a typical damage-associated molecular pattern (DAMP) molecule which generates different redox types through binding with several receptors and signalling molecules, aggravating a range of cellular responses, including inflammation. HMGB1 is reported to participate in the pathogenesis of inflammatory diseases, through the interaction with pivotal transmembrane receptors, including the receptor for advanced glycation end products (RAGE) and toll-like receptor-4 (TLR-4). This review aims to highlight the role of HMGB1 in the innate inflammatory response describing its interaction with several cofactors and receptors that coordinate its downstream effects. Novel and underexplored HMGB1 binding molecules that have been actively involved in HMGB1-mediated inflammatory diseases/conditions with therapeutic potential are further discussed.
  16. Kunasegaran T, Balasubramaniam VRMT, Arasoo VJT, Palanisamy UD, Ramadas A
    Biology (Basel), 2021 Oct 11;10(10).
    PMID: 34681126 DOI: 10.3390/biology10101027
    General gut microbial dysbiosis in diabetes mellitus, including gestational diabetes mellitus (GDM), has been reported in a large body of literature. However, evidence investigating the association between specific taxonomic classes and GDM is lacking. Thus, we performed a systematic review of peer-reviewed observational studies and trials conducted among women with GDM within the last ten years using standard methodology. The National Institutes of Health (NIH) quality assessment tools were used to assess the quality of the included studies. Fourteen studies investigating microbial interactions with GDM were found to be relevant and included in this review. The synthesis of literature findings demonstrates that Bacteroidetes, Proteobacteria, Firmicutes, and Actinobacteria phyla, such as Desulfovibrio, Ruminococcaceae, P. distasonis, Enterobacteriaceae, Collinsella, and Prevotella, were positively associated with GDM. In contrast, Bifidobacterium and Faecalibacterium, which produce butyrate, are negatively associated with GDM. These bacteria were associated with inflammation, adiposity, and glucose intolerance in women with GDM. Lack of good diet management demonstrated the alteration of gut microbiota and its impact on GDM glucose homeostasis. The majority of the studies were of good quality. Therefore, there is great potential to incorporate personalized medicine targeting microbiome modulation through dietary intervention in the management of GDM.
  17. Lee LJ, Komarasamy TV, Adnan NAA, James W, Rmt Balasubramaniam V
    Front Immunol, 2021;12:750365.
    PMID: 34745123 DOI: 10.3389/fimmu.2021.750365
    Zika virus (ZIKV) received worldwide attention over the past decade when outbreaks of the disease were found to be associated with severe neurological syndromes and congenital abnormalities. Unlike most other flaviviruses, ZIKV can spread through sexual and transplacental transmission, adding to the complexity of Zika pathogenesis and clinical outcomes. In addition, the spread of ZIKV in flavivirus-endemic regions, and the high degree of structural and sequence homology between Zika and its close cousin Dengue have raised questions on the interplay between ZIKV and the pre-existing immunity to other flaviviruses and the potential immunopathogenesis. The Zika epidemic peaked in 2016 and has affected over 80 countries worldwide. The re-emergence of large-scale outbreaks in the future is certainly a possibility. To date, there has been no approved antiviral or vaccine against the ZIKV. Therefore, continuing Zika research and developing an effective antiviral and vaccine is essential to prepare the world for a future Zika epidemic. For this purpose, an in-depth understanding of ZIKV interaction with many different pathways in the human host and how it exploits the host immune response is required. For successful infection, the virus has developed elaborate mechanisms to escape the host response, including blocking host interferon response and shutdown of certain host cell translation. This review provides a summary on the key host factors that facilitate ZIKV entry and replication and the mechanisms by which ZIKV antagonizes antiviral innate immune response and involvement of adaptive immune response leading to immunopathology. We also discuss how ZIKV modulates the host immune response during sexual transmission and pregnancy to induce infection, how the cross-reactive immunity from other flaviviruses impacts ZIKV infection, and provide an update on the current status of ZIKV vaccine development.
  18. Khatoon S, Kalam N, Balasubramaniam VR, Shaikh MF, Ansari MT
    Anticancer Agents Med Chem, 2022;22(20):3325-3342.
    PMID: 35578854 DOI: 10.2174/1871520622666220516142839
    Ocimum sanctum is a sacred herb of India and is commonly known as 'Tulsi' or 'Holy Basil' in regional languages of the country. Various parts of O. sanctum are recognised to have remarkable therapeutic efficacy, and are therefore used in Indian traditional medicine system, Ayurveda. Scientific studies have shown that O. sanctum has a range of pharmacological activities. The presence of a substantial amount of polyphenols in O. sanctum could be the reason for its excellent bioactivity. Polyphenols are used to prevent or treat oncologic diseases due to their anti-cancer effects, which are related to activation of apoptotic signaling, cell cycle arrest, binding ability with membrane receptors, and potential effects on immunomodulation and epigenetic mechanisms. The poor bioavailability of polyphenols restricts their clinical use. The application of nanonization has been implemented to improve their bioavailability, penetrability, and prolong their anticancer action. The present review analyses the recent preclinical studies related to the chemo-preventive and therapeutic potential of polyphenols present in O. sanctum. Moreover, the current article also examines in-depth the biochemical and molecular mechanisms involved in the antineoplastic actions of the considered polyphenols.
  19. Kunasegaran T, Balasubramaniam VRMT, Arasoo VJT, Palanisamy UD, Ramadas A
    Curr Nutr Rep, 2023 Mar;12(1):203-214.
    PMID: 36810808 DOI: 10.1007/s13668-023-00453-4
    PURPOSE OF REVIEW: Although gut microbiota have been associated with the etiology of some diseases, the influence of foods on gut microbiota, especially among pregnant women, remains unclear. Hence, a systematic review was performed to investigate the association between diet and gut microbiota and their influence on metabolic health in pregnant women.

    RECENT FINDINGS: We performed the systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 protocol to investigate the association between diet and gut microbiota and their influence on metabolic role in pregnant women. Five databases were searched for relevant peer-reviewed articles published in English since 2011. Two-staged screening of 659 retrieved records resulted in the inclusion of 10 studies. The collated findings suggested associations between nutrient intakes and four key microbes: Collinsella, Lachnospira, Sutterella, Faecalibacterium, and the Firmicutes/Bacteroidetes ratio in pregnant women. Dietary intakes in pregnancy were found to modify the gut microbiota and positively influence the cell metabolism in pregnant women. This review, however, emphasizes the importance of conducting well-designed prospective cohorts to investigate the role of changes in dietary intakes within the pregnancy and the influence of such changes on gut microbiota.

  20. Gilbert-Jaramillo J, Komarasamy TV, Balasubramaniam VR, Heather LC, James WS
    Antiviral Res, 2024 Aug;228:105933.
    PMID: 38851593 DOI: 10.1016/j.antiviral.2024.105933
    The underlying threat of new Zika virus (ZIKV) outbreaks remains, as no vaccines or therapies have yet been developed. In vitro research has shown that glycolysis is a key factor to enable sustained ZIKV replication in neuroprogenitors. However, neither in vivo nor clinical investigation of glycolytic modulators as potential therapeutics for ZIKV-related fetal abnormalities has been conducted. Accordingly, we tested the therapeutic potential of metabolic modulators in relevant in vitro systems comprising two pools of neuroprogenitors (NPCs), which resemble early and late stages of pregnancy. Effective doses of metabolic modulators [3.0 μM] dimethyl fumarate (DMF), [3.2 mM] dichloroacetate (DCA), and [6.3 μM] VER-246608 were determined for these cells by their effect on lactate release, pyruvate dehydrogenase (PDH) activity and cell survival. The drugs were used in a 24h pre-treatment and kept throughout ZIKV infection of NPCs. Drug effects and ZIKV replication were assessed at 24- and 56-h post-infection. In early NPCs treated with DMF, DCA and VER-246608, there was a significant reduction in the extracellular release of ZIKV potentially by PDH-mediated increased mitochondrial oxidation of glucose. Out of the three drugs, only DCA was observed to reduce viral replication in late NPCs treated with DCA. Altogether, our findings suggest that reduction of anaerobic glycolysis could be of therapeutic potential against ZIKV-related fetal abnormalities and that clinical translation should consider the use of specific glycolytic modulators over different trimesters.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links