Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Darmawan MF, Yusuf SM, Abdul Kadir MR, Haron H
    Leg Med (Tokyo), 2015 Mar;17(2):71-8.
    PMID: 25456051 DOI: 10.1016/j.legalmed.2014.09.006
    Age estimation was used in forensic anthropology to help in the identification of individual remains and living person. However, the estimation methods tend to be unique and applicable only to a certain population. This paper analyzed age estimation using twelve regression models carried out on X-ray images of the left hand taken from an Asian data set for subjects under the age of 19. All the nineteen bones of the left hand were measured using free image software and the statistical analysis were performed using SPSS. There are two methods to determine age in this study which are single bone method and all bones method. For single bone method, S-curve regression model was found to have the highest R-square value using second metacarpal for males, and third proximal phalanx for females. For age estimation using single bone, fifth metacarpal from males and fifth proximal phalanx from females can be used due to the lowest mean square error (MSE) value. To conclude, multiple linear regressions is the best techniques for age estimation in cases where all bones are available, but if not, S-curve regression can be used using single bone method.
  2. Darmawan MF, Yusuf SM, Kadir MR, Haron H
    Forensic Sci Int, 2015 Feb;247:130.e1-11.
    PMID: 25540897 DOI: 10.1016/j.forsciint.2014.11.007
    Sex estimation is used in forensic anthropology to assist the identification of individual remains. However, the estimation techniques tend to be unique and applicable only to a certain population. This paper analyzed sex estimation on living individual child below 19 years old using the length of 19 bones of left hand applied for three classification techniques, which were Discriminant Function Analysis (DFA), Support Vector Machine (SVM) and Artificial Neural Network (ANN) multilayer perceptron. These techniques were carried out on X-ray images of the left hand taken from an Asian population data set. All the 19 bones of the left hand were measured using Free Image software, and all the techniques were performed using MATLAB. The group of age "16-19" years old and "7-9" years old were the groups that could be used for sex estimation with as their average of accuracy percentage was above 80%. ANN model was the best classification technique with the highest average of accuracy percentage in the two groups of age compared to other classification techniques. The results show that each classification technique has the best accuracy percentage on each different group of age.
  3. Mustafa AA, Matinlinna JP, Saidin S, Kadir MR
    J Prosthet Dent, 2014 Dec;112(6):1498-506.
    PMID: 24993375 DOI: 10.1016/j.prosdent.2014.05.011
    STATEMENT OF PROBLEM: The inconsistency of dentin bonding affects retention and microleakage.

    PURPOSE: The purpose of this laboratory and finite element analysis study was to investigate the effects on the formation of a hybrid layer of an experimental silane coupling agent containing primer solutions composed of different percentages of hydroxyethyl methacrylate.

    MATERIAL AND METHODS: A total of 125 sound human premolars were restored in vitro. Simple class I cavities were formed on each tooth, followed by the application of different compositions of experimental silane primers (0%, 5%, 25%, and 50% of hydroxyethyl methacrylate), bonding agents, and dental composite resins. Bond strength tests and scanning electron microscopy analyses were performed. The laboratory experimental results were validated with finite element analysis to determine the pattern of stress distribution. Simulations were conducted by placing the restorative composite resin in a premolar tooth by imitating simple class I cavities. The laboratory and finite element analysis data were significantly different from each other, as determined by 1-way ANOVA. A post hoc analysis was conducted on the bond strength data to further clarify the effects of silane primers.

    RESULTS: The strongest bond of hybrid layer (16.96 MPa) was found in the primer with 25% hydroxyethyl methacrylate, suggesting a barely visible hybrid layer barrier. The control specimens without the application of the primer and the primer specimens with no hydroxyethyl methacrylate exhibited the lowest strength values (8.30 MPa and 11.78 MPa) with intermittent and low visibility of the hybrid layer. These results were supported by finite element analysis that suggested an evenly distributed stress on the model with 25% hydroxyethyl methacrylate.

    CONCLUSIONS: Different compositions of experimental silane primers affected the formation of the hybrid layer and its resulting bond strength.

  4. Ishak MI, Abdul Kadir MR, Sulaiman E, Abu Kasim NH
    Int J Oral Maxillofac Surg, 2012 Sep;41(9):1077-89.
    PMID: 22575179 DOI: 10.1016/j.ijom.2012.04.010
    The aim of this study was to compare two different types of surgical approaches, intrasinus and extramaxillary, for the placement of zygomatic implants to treat atrophic maxillae. A computational finite element simulation was used to analyze the strength of implant anchorage for both approaches in various occlusal loading locations. Three-dimensional models of the craniofacial structures surrounding a region of interest, soft tissue and framework were developed using computed tomography image datasets. The implants were modelled using computer-aided design software. The bone was assumed to be linear isotropic with a stiffness of 13.4 GPa, and the implants were assumed to be made of titanium with a stiffness of 110 GPa. Masseter forces of 300 N were applied at the zygomatic arch, and occlusal loads of 150 N were applied vertically onto the framework surface at different locations. The intrasinus approach demonstrated more satisfactory results and could be a viable treatment option. The extramaxillary approach could also be recommended as a reasonable treatment option, provided some improvements are made to address the cantilever effects seen with that approach.
  5. Kadir MF, Aspanut Z, Majid SR, Arof AK
    PMID: 21237698 DOI: 10.1016/j.saa.2010.12.051
    Fourier transform infrared (FTIR) spectroscopy studies of poly(vinyl alcohol) (PVA), and chitosan polymer blend doped with ammonium nitrate (NH(4)NO(3)) salt and plasticized with ethylene carbonate (EC) have been performed with emphasis on the shift of the carboxamide, amine and hydroxyl bands. 1% acetic acid solution was used as the solvent. It is observed from the chitosan film spectrum that evidence of polymer-solvent interaction can be observed from the shifting of the carboxamide band at 1660 cm(-1) and the amine band at 1591 cm(-1) to 1650 and 1557 cm(-1) respectively and the shift of the hydroxyl band from 3377 to 3354 cm(-1). The hydroxyl band in the spectrum of PVA powder is observed at 3354 cm(-1) and is observed at 3343 cm(-1) in the spectrum of the PVA film. On addition of NH(4)NO(3) up to 30 wt.%, the carboxamide, amine and hydroxyl bands shifted from 1650, 1557 and 3354 cm(-1) to 1642, 1541 and 3348 cm(-1) indicating that the chitosan has complexed with the salt. In the PVA-NH(4)NO(3) spectrum, the hydroxyl band has shifted from 3343 to 3272 cm(-1) on addition of salt from 10 to 30 wt.%. EC acts as a plasticizing agent since there is no shift in the bands as observed in the spectrum of PVA-chitosan-EC films. The mechanism of ion migration is proposed for the plasticized and unplasticized PVA-chitosan-NH(4)NO(3) systems. In the spectrum of PVA-chitosan-NH(4)NO(3)-EC complex, the doublet CO stretching in EC is observed in the vicinity 1800 and 1700. This indicates that there is some interaction between the salt and EC.
  6. De Silva AE, Kadir MA, Aziz MA, Kadzimin S
    ScientificWorldJournal, 2006 Feb 17;6:169-75.
    PMID: 16493521
    Differential effect of plant growth regulators and additives in proliferation of 18-month-old calli of Ananas comosus L. cv. Moris were assessed in vitro. The proliferation of callus relied on the growth regulators and additives. Of the different auxins supplemented in the Murashige and Skoog (MS) media, 32.22 microM alpha-naphthaleneacetic acid (NAA) gave the highest mean fresh weight of callus (46.817 g). Medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) was inferior to NAA, while b-naphthoxy acetic acid (BNOA) and p-chlorophenoxy acetic acid (4-CPA) were not effective in proliferating 18-months old callus. Addition of casein hydrolysate and coconut water to NAA supplemented medium showed better proliferation and production of callus. However, in terms of callus production, NAA at 32.22 microM was economically better.
  7. Almasi D, Izman S, Sadeghi M, Iqbal N, Roozbahani F, Krishnamurithy G, et al.
    Int J Biomater, 2015;2015:475435.
    PMID: 25838826 DOI: 10.1155/2015/475435
    Polyether ether ketone (PEEK) is considered the best alternative material for titanium for spinal fusion cage implants due to its low elasticity modulus and radiolucent property. The main problem of PEEK is its bioinert properties. Coating with hydroxyapatite (HA) showed very good improvement in bioactivity of the PEEK implants. However the existing methods for deposition of HA have some disadvantages and damage the PEEK substrate. In our previous study a new method for deposition of HA on PEEK was presented. In this study cell proliferation of mesenchymal stem cell and apatite formation in simulated body fluid (SBF) tests were conducted to probe the effect of this new method in improvement of the bioactivity of PEEK. The mesenchymal stem cell proliferation result showed better cells proliferation on the treated layer in comparison with untreated PEEK. The apatite formation results showed the growth of the HA on the treated PEEK but there was not any sight of the growth of HA on the untreated PEEK even after 2 weeks. The results showed the new method of the HA deposition improved the bioactivity of the treated PEEK in comparison with the bare PEEK.
  8. Kadir MA, Abdul Razak FI, Haris NSH
    Data Brief, 2020 Oct;32:106263.
    PMID: 32905010 DOI: 10.1016/j.dib.2020.106263
    The data in this article provide information on spectroscopic and theoretical data for p-chlorocalix[4]arene when combined with selected drugs, such as paracetamol, ibuprofen, and cetirizine. The present spectroscopic data are generated from Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1H NMR and 13C NMR), and Ultraviolet-Visible spectroscopy (UV-Vis) as the key tools for molecular characterization. The measurement of the optimization energy, interaction energy, and the band gap energy between the molecules was calculated by Gaussian 09 software. It is interesting to note that of the three titled drugs identified, p-chlorocalix[4]arene showed the highest interaction energy with paracetamol, followed by ibuprofen and cetirizine.
  9. Low PT, Ng CG, Kadir MS, Tang SL
    Med J Malaysia, 2021 09;76(5):617-623.
    PMID: 34508365
    INTRODUCTION: Non-attendance and medication adherence are longstanding concerns in psychiatric outpatient settings. This study aimed to determine effectiveness of reminders using mobile messaging applications (messaging apps) in improving outpatient attendance and medication adherence among patients with depression.

    METHODS: This was a parallel, open-label randomised controlled trial with participants recruited from psychiatric outpatient services of a teaching hospital in Kuala Lumpur and a secondary hospital in Melaka. Adults (≥18 years) diagnosed with major depressive disorder; capable of reading and understanding English or Bahasa Malaysia; prescribed with at least one antidepressant and owns a smart phone were subsequently randomly assigned (1:1) to receive treatment reminders (intervention) or standard treatment without reminders (control), using a computergenerated randomisation programme. The intervention group received two reminder categories: Outpatient appointment reminders (a day before appointment); and medication reminders (weekly basis). Participants were followed-up over two months. We utilised Montgomery- Asberg Depression Rating Scale (MADRS) to measure the severity of depression; and Brief Adherence Rating Scale (BARS) to assess medication adherence. Primary outcomes were outpatient attendance rates and medication adherence assessed at two months. Secondary outcomes included changes in depression severity within each group at two months; comparison of changes in depression severity between both groups; preferences of participants towards treatment reminders, and reasons for non-attendance among participants. This trial was registered with the National Medical Research Registry, NMRR-19-3466-52001.

    RESULTS: Between February and April 2020, 183 participants were randomised to each group, of whom 179 reached study endpoint (91 [98.9%] of 92 in intervention group and 88 [96.7%] of 91 in control group). All recruited participants (n=183) were analysed using intention-to-treat approach. At two months, intervention group has significantly higher outpatient attendance rates (76.8%) than control group (56.4%) (p=0.002), and reported higher medical adherence percentage (mean difference 23.1, [95%CI 0.4, 35.8]; p<0.001). There was also significant difference in the MADRS score change between both groups (mean difference 3.4, [95%CI 0.4, 6.3]; p=0.025). Treatment reminders preferences among participants varied; forgetfulness was the most commonly reported reason (53%) for missing outpatient appointments.

    CONCLUSION: Reminders through mobile messaging applications significantly improved outpatient attendance and medication adherence among patients with depression. Our findings support the use of messaging apps for treatment reminders in psychiatric outpatient settings. However, concerns regarding confidentiality require careful measures to be taken.

  10. Aziz SB, Hamsan MH, Abdullah RM, Kadir MFZ
    Molecules, 2019 Jul 09;24(13).
    PMID: 31323966 DOI: 10.3390/molecules24132503
    In the present work, promising proton conducting solid polymer blend electrolytes (SPBEs) composed of chitosan (CS) and methylcellulose (MC) were prepared for electrochemical double-layer capacitor (EDLC) application with a high specific capacitance and energy density. The change in intensity and the broad nature of the XRD pattern of doped samples compared to pure CS:MC system evidencedthe amorphous character of the electrolyte samples. The morphology of the samples in FESEM images supported the amorphous behavior of the solid electrolyte films. The results of impedance and Bode plotindicate that the bulk resistance decreasedwith increasing salt concentration. The highest DC conductivity was found to be 2.81 × 10-3 S/cm. The electrical equivalent circuit (EEC) model was conducted for selected samples to explain the complete picture of the electrical properties.The performance of EDLC cells was examined at room temperature by electrochemical techniques, such as impedance spectroscopy, cyclic voltammetry (CV) and constant current charge-discharge techniques. It was found that the studied samples exhibit a very good performance as electrolyte for EDLC applications. Ions were found to be the dominant charge carriers in the polymer electrolyte. The ion transference number (tion) was found to be 0.84 while 0.16 for electron transference number (tel). Through investigation of linear sweep voltammetry (LSV), the CS:MC:NH4SCN system was found to be electrochemically stable up to 1.8 V. The CV plot revealed no redox peak, indicating the occurrence of charge double-layer at the surface of activated carbon electrodes. Specific capacitance (Cspe) for the fabricated EDLC was calculated using CV plot and charge-discharge analyses. It was found to be 66.3 F g-1 and 69.9 F g-1 (at thefirst cycle), respectively. Equivalent series resistance (Resr) of the EDLC was also identified, ranging from 50.0 to 150.0 Ω. Finally, energy density (Ed) was stabilized to anaverage of 8.63 Wh kg-1 from the 10th cycle to the 100th cycle. The first cycle obtained power density (Pd) of 1666.6 W kg-1 and then itdropped to 747.0 W kg-1 at the 50th cycle and continued to drop to 555.5 W kg-1 as the EDLC completed 100 cycles.
  11. Kadir MA, Mansor N, Osman MU, Haris NSH
    Data Brief, 2019 Aug;25:104266.
    PMID: 31453284 DOI: 10.1016/j.dib.2019.104266
    This paper provided spectroscopic data that is relevant with research article entitled "Synthesis and structural characterization of 6-(N-methyl-pyridin-2-ylcarbamoyl)-pyridine-2-carboxylic acid methyl ester Isomer" (Kadir et al., 2017) [1]. From the reported study, four new ligand of monoamide isomers were successfully synthesized using acyl chloride methods. The monoamide compounds namely 6-(3-methyl-pyridin-2-ylcarbamoyl)-pyridine-2-carboxylic acid methyl ester (L1), 6-(4-methyl-pyridin-2-ylcarbamoyl)-pyridine-2-carboxylic acid methyl ester (L2), 6-(5-methyl-pyridin-2-ylcarbamoyl)-pyridine-2-carboxylic acid methyl ester (L3) and 6-(6-methyl-pyridin-2-ylcarbamoyl)-pyridine-2-carboxylic acid methyl ester (L4) were fully characterized by Fourier Transform Infrared (FTIR), 1H Nuclear Magnetic Resonance (1H NMR) and 13C Nuclear Magnetic Resonance (13C NMR), Ultraviolet Visible (UV-Vis) and elemental analyzer (CHNS).
  12. Shahrubudin N, Koshy P, Alipal J, Kadir MHA, Lee TC
    Heliyon, 2020 Apr;6(4):e03734.
    PMID: 32322726 DOI: 10.1016/j.heliyon.2020.e03734
    Additive manufacturing has attracted increasing attention worldwide, especially in the healthcare, biomedical, aerospace, and construction industries. In Malaysia, insufficient acceptance of this technology by local industries has resulted in a call for government and local practitioners to promulgate the development of this technology for various industries, particularly for biomedical products. The current study intends to frame the challenges endured by biomedical industries who use 3D printing technology for their manufacturing processes. Qualitative methods, particularly in-depth interviews, were used to identify the challenges faced by manufacturing firms when producing 3D printed biomedical products. This work was able to identify twelve key challenges when deploying additive manufacturing in biomedical products and these include issues related to binder selection, poor mechanical properties, low-dimensional accuracy, high levels of powder agglomeration, nozzle size, distribution size, limited choice of materials, texture and colour, lifespan of materials, customization of fit and design, layer height, and, lastly, build-failure. Furthermore, there also are six challenges in the management of manufacturing biomedical products using 3D printing technology, and these include staff re-education, product pricing, limited guidelines, cyber-security issues, marketing, and patents and copyright. This study discusses the reality faced by 3D printing players when producing biomedical products in Malaysia, and presents a primary reference for practitioners in other developing countries.
  13. Bakhsheshi-Rad HR, Hamzah E, Kasiri-Asgarani M, Jabbarzare S, Iqbal N, Abdul Kadir MR
    Mater Sci Eng C Mater Biol Appl, 2016 Mar;60:526-537.
    PMID: 26706560 DOI: 10.1016/j.msec.2015.11.057
    The present study addressed the synthesis of a bi-layered nanostructured fluorine-doped hydroxyapatite (nFHA)/polycaprolactone (PCL) coating on Mg-2Zn-3Ce alloy via a combination of electrodeposition (ED) and dip-coating methods. The nFHA/PCL composite coating is composed of a thick (70-80 μm) and porous layer of PCL that uniformly covered the thin nFHA film (8-10 μm) with nanoneedle-like microstructure and crystallite size of around 70-90 nm. Electrochemical measurements showed that the nFHA/PCL composite coating presented a high corrosion resistance (R(p)=2.9×10(3) kΩ cm(2)) and provided sufficient protection for a Mg substrate against galvanic corrosion. The mechanical integrity of the nFHA/PCL composite coatings immersed in SBF for 10 days showed higher compressive strength (34% higher) compared with the uncoated samples, indicating that composite coatings can delay the loss of compressive strength of the Mg alloy. The nFHA/PCL coating indicted better bonding strength (6.9 MPa) compared to PCL coating (2.2 MPa). Immersion tests showed that nFHA/PCL composite-coated alloy experienced much milder corrosion attack and more nucleation sites for apatite compared with the PCL coated and uncoated samples. The bi-layered nFHA/PCL coating can be a good alternative method for the control of corrosion degradation of biodegradable Mg alloy for implant applications.
  14. Valdiani A, Talei D, Tan SG, Abdul Kadir M, Maziah M, Rafii MY, et al.
    PLoS One, 2014;9(2):e87034.
    PMID: 24586262 DOI: 10.1371/journal.pone.0087034
    Andrographolides, the diterpene lactones, are major bioactive phytochemicals which could be found in different parts of the medicinal herb Andrographis paniculata. A number of such compounds namely andrographolide (AG), neoandrographolide (NAG), and 14-deoxy-11,12-didehydroandrographolide (DDAG) have already attracted a great deal of attention due to their potential therapeutic effects in hard-to-treat diseases such as cancers and HIV. Recently, they have also been considered as substrates for the discovery of novel pharmaceutical compounds. Nevertheless, there is still a huge gap in knowledge on the genetic pattern of the biosynthesis of these bioactive compounds. Hence, the present study aimed to investigate the genetic mechanisms controlling the biosynthesis of these phytochemicals using a diallel analysis. The high performance liquid chromatography analysis of the three andrographolides in 210 F1 progenies confirmed that the biosynthesis of these andrographolides was considerably increased via intraspecific hybridization. The results revealed high, moderate and low heterosis for DDAG, AG and NAG, respectively. Furthermore, the preponderance of non-additive gene actions was affirmed in the enhancement of the three andrographolides contents. The consequence of this type of gene action was the occurrence of high broad-sense and low narrow-sense heritabilities for the above mentioned andrographolides. The prevalence of non-additive gene action suggests the suitability of heterosis breeding and hybrid seed production as a preferred option to produce new plant varieties with higher andrographolide contents using the wild accessions of A. paniculata. Moreover, from an evolutionary point of view, the occurrence of population bottlenecks in the Malaysian accessions of A. paniculata was unveiled by observing a low level of additive genetic variance (VA ) for all the andrographolides.
  15. Ulum MF, Arafat A, Noviana D, Yusop AH, Nasution AK, Abdul Kadir MR, et al.
    Mater Sci Eng C Mater Biol Appl, 2014 Mar 1;36:336-44.
    PMID: 24433920 DOI: 10.1016/j.msec.2013.12.022
    Biodegradable metals such as magnesium, iron and their alloys have been known as potential materials for temporary medical implants. However, most of the studies on biodegradable metals have been focusing on optimizing their mechanical properties and degradation behavior with no emphasis on improving their bioactivity behavior. We therefore investigated the possibility of improving iron biodegradation rate and bioactivity by incorporating various bioactive bioceramics. The iron-based bioceramic (hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate) composites were prepared by mechanical mixing and sintering process. Degradation studies indicated that the addition of bioceramics lowered the corrosion potential of the composites and slightly increased their corrosion rate compared to that of pure iron. In vitro cytotoxicity results showed an increase of cellular activity when rat smooth muscle cells interacted with the degrading composites compared to pure iron. X-ray radiogram analysis showed a consistent degradation progress with that found in vivo and positive tissue response up to 70 days implantation in sheep animal model. Therefore, the iron-based bioceramic composites have the potential to be used for biodegradable bone implant applications.
  16. Farshad Ashraf M, Abd Aziz M, Abdul Kadir M, Stanslas J, Farokhian E
    Plant Cell Physiol, 2013 Aug;54(8):1356-64.
    PMID: 23749812 DOI: 10.1093/pcp/pct083
    This study focuses on the establishment of in vitro tuberization of Chlorophytum borivilianum using solid and liquid culture systems. A high in vitro tuberization rate on solid and stationary liquid Murashige and Skoog media was observed in the presence of 60 g l⁻¹ sucrose with 950, 1,265 and 1,580 µM 2-chloroethyl-trimethylammonium chloride (CCC). Application of a higher sucrose concentration of 90 g l⁻¹ showed a negative interaction with CCC on in vitro tuber number and days to in vitro tuber induction. For economic feasibility, 950 µM CCC with 60 g l⁻¹ sucrose was chosen as the best combination for in vitro tuberization in both solid and stationary liquid media. For optimization of in vitro tuber production,a comparison between solid, stationary liquid and shake liquid culture was carried out. Liquid culture with shaking at 80 r.p.m. resulted in a >2.5-fold increase in in vitro tuber production compared with solid culture.
  17. Yusop AH, Bakir AA, Shaharom NA, Abdul Kadir MR, Hermawan H
    Int J Biomater, 2012;2012:641430.
    PMID: 22919393 DOI: 10.1155/2012/641430
    Scaffolds have been utilized in tissue regeneration to facilitate the formation and maturation of new tissues or organs where a balance between temporary mechanical support and mass transport (degradation and cell growth) is ideally achieved. Polymers have been widely chosen as tissue scaffolding material having a good combination of biodegradability, biocompatibility, and porous structure. Metals that can degrade in physiological environment, namely, biodegradable metals, are proposed as potential materials for hard tissue scaffolding where biodegradable polymers are often considered as having poor mechanical properties. Biodegradable metal scaffolds have showed interesting mechanical property that was close to that of human bone with tailored degradation behaviour. The current promising fabrication technique for making scaffolds, such as computation-aided solid free-form method, can be easily applied to metals. With further optimization in topologically ordered porosity design exploiting material property and fabrication technique, porous biodegradable metals could be the potential materials for making hard tissue scaffolds.
  18. Valdiani A, Abdul Kadir M, Said Saad M, Talei D, Omidvar V, Hua CS
    ScientificWorldJournal, 2012;2012:297545.
    PMID: 22701352 DOI: 10.1100/2012/297545
    The ambiguity of crossability in Andrographis paniculata (AP) was pointed out in the present research. Accordingly, the effects of different style length and crossing time on intraspecific crossability of seven AP accessions in 21 possible combinations were investigated. The best results came out between 08:00 to 11:00 h for manual out-crossing of AP, while the time from 12:00 to 18:00 h showed a decreasing trend. Moreover, 12 mm style length was found as the most proper phenological stage in terms of stigmatic receptivity to perform out-crossing in this plant. All in all, AP behaved unlikely in each combination, and a significant difference was observed in crossability of AP accessions (P < 0.01). The lowest and highest crossability rate was found in hybrids 21 (11261NS × 11344K) and 27 (11322PA × 11350T) with 0.25% and 13.33%, respectively. Furthermore, a significant negative relationship between style length and crossibility (r² = 0.762(∗∗)) was recorded in this research. As a final conclusion, crossing time and proper style length can improve the intraspecific crossability in the species, considerably. Despite all the mentioned contrivances, we still believe that a genetic incongruity should be involved as an additional obstacle in crossability of those combinations that failed or responded deficiently to outcrossing.
  19. Naroui Rad MR, Abdul Kadir M, Rafii MY, Jaafar HZ, Naghavi MR
    Genet. Mol. Res., 2012;11(4):3882-8.
    PMID: 23212327 DOI: 10.4238/2012.November.12.5
    This study was carried out to evaluate the genetic effect of quantitative trait loci (QTLs) conferring drought tolerance in wheat. A population of 120 F(2) individuals from the cross between the drought-tolerant S-78-11 and drought-sensitive Tajan cultivars were analyzed for their segregation under drought stress conditions. The relative water content under drought stress conditions exhibited continuous variation, indicating the minor gene effects on the trait. Single-marker analysis (SMA) was carried out to detect the main QTL association with drought tolerance. The SMA results revealed that the simple sequence repeat markers GWM182 and GWM292 on chromosome 5D and GWM410 on chromosome 5A exhibited significant association with drought tolerance, accounting for 30, 22, and 21% of the total variation, respectively. The 3 genetic loci, especially GWM182, can be used in marker-assisted selection methods in drought tolerance breeding in wheat.
  20. Nasir MSM, Ab-Kadir MZA, Radzi MAM, Izadi M, Ahmad NI, Zaini NH
    PLoS One, 2019;14(7):e0219326.
    PMID: 31295278 DOI: 10.1371/journal.pone.0219326
    The Sustainable Energy Development Authority of Malaysia (SEDA) regularly receives complaints about damaged components and distribution boards of PV systems due to lightning strikes. Permanent and momentary interruptions of distribution circuits may also occur from the disturbance. In this paper, a solar PV Rooftop system (3.91 kWp) provided by SEDA was modelled in the PSCAD/EMTDC. The Heidler function was used as a lightning current waveform model to analyse the transient current and voltage at two different points susceptible to the influence of lightning events such as different lightning current wave shape, standard lightning current and non-standard lightning current. This study examines the effect on the system components when lightning directly strikes at two different points of the installation. The two points lie between the inverter and the solar PV array and between inverter and grid. Exceptionally high current and voltage due to the direct lightning strike on a certain point of a PV Rooftop system was also studied. The result of this case study is observed with and without the inclusion of surge protective devices (SPDs). The parameters used were 31 kA of peak current, 10 metres cable length and lightning impulse current wave shape of 8/20μs. The high current and voltage at P1 striking point were 31 kA and 2397 kV, respectively. As for the AC part, the current and voltage values were found to be 5.97 kA and 5392 kV, respectively.Therefore, SPDs with suitable rating provided by SEDA were deployed. Results showed that high transient current voltage is expected to clamp sharply at the values of 1.915 kV and 0 A at the P1 striking point. As for the AC part, the current and voltage values were found to be 0 kA and 0.751 V, respectively. Varying lightning impulse current wave shapes at striking point P2 showed that the highest voltage was obtained at waveshape 10/350 μs at 11277 kV followed by wave shapes of 2/70 μs, 8/20 μs and 0.7/6 μs. The high value of transient voltage was clamped at a lower level of 2.029 kV. Different lightning amplitudes were also applied, ranging from 2-200 kA selected based on the CIGRE distribution. It showed that the current and voltage at P1 and P2 were directly proportional. Therefore, the SPD will be designed at an acceptable rating and proper position of SPD installation at solar PV Rooftop will be proposed. The results obtained in this study can then be utilised to appropriately assign a SPD to protect the PV systems that are connected to the grid. Installing SPDs without considering the needs of lightning protection zones would expose the expensive equipment to potential damage even though the proper energy coordination of SPDs is in place. As such, the simulation results provide a basis for controlling the impacts of direct lightning strikes on electrical equipment and power grids and thus justify SPD coordination to ensure the reliability of the system.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links