Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Gholap AD, Gupta J, Kamandar P, Bhowmik DD, Rojekar S, Faiyazuddin M, et al.
    ACS Biomater Sci Eng, 2024 Jan 08;10(1):271-297.
    PMID: 38096426 DOI: 10.1021/acsbiomaterials.3c01247
    Nanotechnology has emerged as a transformative pathway in vaccine research and delivery. Nanovaccines, encompassing lipid and nonlipid formulations, exhibit considerable advantages over traditional vaccine techniques, including enhanced antigen stability, heightened immunogenicity, targeted distribution, and the potential for codelivery with adjuvants or immune modulators. This review provides a comprehensive overview of the latest advancements and applications of lipid and non-lipid-based nanovaccines in current vaccination strategies for immunization. The review commences by outlining the fundamental concepts underlying lipid and nonlipid nanovaccine design before delving into the diverse components and production processes employed in their development. Subsequently, a comparative analysis of various nanocarriers is presented, elucidating their distinct physicochemical characteristics and impact on the immune response, along with preclinical and clinical studies. The discussion also highlights how nanotechnology enables the possibility of personalized and combined vaccination techniques, facilitating the creation of tailored nanovaccines to meet the individual patient needs. The ethical aspects concerning the use of nanovaccines, as well as potential safety concerns and public perception, are also addressed. The study underscores the gaps and challenges that must be overcome before adopting nanovaccines in clinical practice. This comprehensive analysis offers vital new insights into lipid and nonlipid nanovaccine status. It emphasizes the significance of continuous research, collaboration among interdisciplinary experts, and regulatory measures to fully unlock the potential of nanotechnology in enhancing immunization and ensuring a healthier, more resilient society.
  2. Mohite P, Yadav V, Pandhare R, Maitra S, Saleh FM, Saleem RM, et al.
    ACS Omega, 2024 Feb 20;9(7):7277-7295.
    PMID: 38405458 DOI: 10.1021/acsomega.3c06501
    In the realm of cancer immunotherapy, a profound evolution has ushered in sophisticated strategies that encompass both traditional cancer vaccines and emerging viral vaccines. This comprehensive Review offers an in-depth exploration of the methodologies, clinical applications, success stories, and future prospects of these approaches. Traditional cancer vaccines have undergone significant advancements utilizing diverse modalities such as proteins, peptides, and dendritic cells. More recent innovations have focused on the physiological mechanisms enabling the human body to recognize and combat precancerous and malignant cells, introducing specific markers like peptide-based anticancer vaccines targeting tumor-associated antigens. Moreover, cancer viral vaccines, leveraging engineered viruses to stimulate immune responses against specific antigens, exhibit substantial promise in inducing robust and enduring immunity. Integration with complementary therapeutic methods, including monoclonal antibodies, adjuvants, and radiation therapy, has not only improved survival rates but also deepened our understanding of viral virulence. Recent strides in vaccine design, encompassing oncolytic viruses, virus-like particles, and viral vectors, mark the frontier of innovation. While these advances hold immense potential, critical challenges must be addressed, such as strategies for immune evasion, potential off-target effects, and the optimization of viral genomes. In the landscape of immunotherapy, noteworthy innovations take the spotlight from the use of immunomodulatory agents for the enhancement of innate and adaptive immune collaboration. The emergence of proteolysis-targeting chimeras (PROTACs) as precision tools for cancer therapy is particularly exciting. With a focus on various cancers, from melanoma to formidable solid tumors, this Review critically assesses types of cancer vaccines, mechanisms, barriers in vaccine therapy, vaccine efficacy, safety profiles, and immune-related adverse events, providing a nuanced perspective on the underlying mechanisms involving cytotoxic T cells, natural killer cells, and dendritic cells. The Review also underscores the transformative potential of cutting-edge technologies such as clinical studies, molecular sequencing, and artificial intelligence in advancing the field of cancer vaccines. These tools not only expedite progress but also emphasize the multidimensional and rapidly evolving nature of this research, affirming its profound significance in the broader context of cancer therapy.
  3. Lim PK, Yamasaki H, Mak JW, Wong SF, Chong CW, Yap IK, et al.
    Acta Trop, 2015 Aug;148:32-7.
    PMID: 25910623 DOI: 10.1016/j.actatropica.2015.04.011
    Human toxocariasis which is caused mainly by the larvae of Toxocara canis and Toxocara cati, is a worldwide zoonotic disease that can be a potentially serious human infection. The enzyme-linked immunosorbent assay (ELISA) using T. canis excretory-secretory (TES) antigens harvested from T. canis larvae is currently the serological test for confirming toxocariasis. An alternative to producing large amounts of Toxocara TES and improved diagnosis for toxocariasis is through the development of highly specific recombinant antigens such as the T. canis second stage larva excretory-secretory 30 kDa protein (recTES-30). The aim of this study was to evaluate the sensitivity and specificity of a rapid diagnostic kit (RDT, named as iToxocara kit) in comparison to recTES-30 ELISA in Serendah Orang Asli village in Selangor, Malaysia. A total of 133 subjects were included in the study. The overall prevalence rates by ELISA and RDT were 29.3% and 33.1%, respectively, with more positive cases detected in males than females. However, no association was found between toxocariasis and gender or age. The percentage sensitivity, specificity, positive predictive value and negative predictive value of RDT were 85.7%, 90.1%, 80% and 93.2%, respectively. The prevalence for toxocariasis in this population using both ELISA and RDT was 27.1% (36/133) and the K-concordance test suggested good agreement of the two tests with a Cohen's kappa of 0.722, P<0.01. In addition, the followed-up Spearman rank correlation showed a moderately high correlation at R=0.704 and P<0.01. In conclusion, the RDT kit was faster and easier to use than an ELISA and is useful for the laboratory diagnosis of hospitalized cases of toxocariasis.
  4. Hayat C, Subramaniyan V, Alamri MA, Wong LS, Khalid A, Abdalla AN, et al.
    BMC Chem, 2024 Apr 18;18(1):76.
    PMID: 38637900 DOI: 10.1186/s13065-024-01178-3
    Nod-like receptor protein 3 (NLRP-3), is an intracellular sensor that is involved in inflammasome activation, and the aberrant expression of NLRP3 is responsible for diabetes mellitus, its complications, and many other inflammatory diseases. NLRP3 is considered a promising drug target for novel drug design. Here, a pharmacophore model was generated from the most potent inhibitor, and its validation was performed by the Gunner-Henry scoring method. The validated pharmacophore was used to screen selected compounds databases. As a result, 646 compounds were mapped on the pharmacophore model. After applying Lipinski's rule of five, 391 hits were obtained. All the hits were docked into the binding pocket of target protein. Based on docking scores and interactions with binding site residues, six compounds were selected potential hits. To check the stability of these compounds, 100 ns molecular dynamic (MD) simulations were performed. The RMSD, RMSF, DCCM and hydrogen bond analysis showed that all the six compounds formed stable complex with NLRP3. The binding free energy with the MM-PBSA approach suggested that electrostatic force, and van der Waals interactions, played a significant role in the binding pattern of these compounds. Thus, the outcomes of the current study could provide insights into the identification of new potential NLRP3 inflammasome inhibitors against diabetes and its related disorders.
  5. Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, et al.
    Biomed Pharmacother, 2024 Jan;170:116083.
    PMID: 38163395 DOI: 10.1016/j.biopha.2023.116083
    As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.
  6. Kumarasamy V, Anbazhagan D, Subramaniyan V, Vellasamy S
    Curr Pharm Des, 2018;24(27):3172-3175.
    PMID: 30084327 DOI: 10.2174/1381612824666180807101536
    Blastocystis sp. is a unicellular parasitic microorganism commonly found in the gastrointestinal tracts of humans and animals. It causes symptomatic or asymptomatic infection and its route of transmission is via fecal-oral. High prevalence of Blastocystis infection in developing countries is usually due to poor hygiene practices, exposure to animals infected with the parasite and intake of contaminated water or food. Blastocystis infected individuals often suffer from diarrhea, abdominal pain, nausea, and stomach bloating. Even though pathogenicity of Blastocystis is unclear, it is commonly associated with irritable bowel syndrome. In this review, we have analysed the evidence that shows the association between this microorganism and gastrointestinal disorders. There have been a number of studies which showed that the pathogenicity of Blastocystis is related to its different STs. The pathogenicity is speculated to be due to cysteine proteases formation which stimulates mucosal cells to release interleukin-8 which has been associated with extreme dehydration and gut inflammation. In vitro studies on human colonic epithelial cells revealed that incubation of Blastocystis modulated the host immune response by stimulating the formation of pro-inflammatory cytokines and granulocyte macrophage colonystimulating factor. Metronidazole is found to be the first-line drug of choice. Another treatment option is the combination therapy with trimethoprim/sulfamethoxazole.
  7. Azad AK, Sulaiman WMAW, Almoustafa H, Dayoob M, Kumarasamy V, Subramaniyan V, et al.
    Data Brief, 2024 Apr;53:110202.
    PMID: 38439989 DOI: 10.1016/j.dib.2024.110202
    5-Fluorouracil (5-FU) has been the primary drug used in chemotherapy for colorectal carcinoma, and localizing the drug would be effective in avoiding its side effects and improving therapeutic outcomes. One approach to achieve this is by encapsulating the drug in microbeads. Alginate microbeads, in particular, exhibit promising pH-sensitive properties, making them an attractive option for colon targeting. Thus, the main aim of this study is to formulate and characterize 5-FU-encapsulated alginate microbeads as a pH-sensitive drug delivery system for controlled release in the gastrointestinal tract. In this study, the alginate microbeads encapsulating 5-FU was manufactured using electrospray methods. This method offers the advantages of promoting the formulation of uniformly small-sized microbeads with improved performance in terms of swelling and diffusion rates. The size and shape of the 5-FU microbeads are 394.23 ± 3.077 µm and have a spherical factor of 0.026 ± 0.022, respectively, which are considered acceptable and indicative of a spherical shape. The microbeads' encapsulation efficiency was found to be 69.65 ± 0.18%, which is considered high in comparison to other literature. The attenuated total reflectance - Fourier transform infrared spectroscopy (ATR-FTIR) data confirmed the complexation of sodium alginate with calcium ions, along with the encapsulation of 5-FU in the microbeads matrix. The 5-FU microbeads displayed pH-dependent swelling, exhibiting less swelling in simulated gastric fluid (SGF) than in simulated intestinal fluid (SIF). Additionally, the release of 5-FU from the microbeads is pH-dependent, with the cumulative percentage drug release being higher in simulated intestinal fluid than in SGF. The data indicate that the 5-FU microbeads can be utilized for the delivery of 5-FU in colon-targeted therapy, potentially leading to improved tumor treatment.
  8. Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, et al.
    Exp Gerontol, 2024 Apr;188:112389.
    PMID: 38432575 DOI: 10.1016/j.exger.2024.112389
    Aging-related diseases (ARDs) are a major global health concern, and the development of effective therapies is urgently needed. Kaempferol, a flavonoid found in several plants, has emerged as a promising candidate for ameliorating ARDs. This comprehensive review examines Kaempferol's chemical properties, safety profile, and pharmacokinetics, and highlights its potential therapeutic utility against ARDs. Kaempferol's therapeutic potential is underpinned by its distinctive chemical structure, which confers antioxidative and anti-inflammatory properties. Kaempferol counteracts reactive oxygen species (ROS) and modulates crucial cellular pathways, thereby combating oxidative stress and inflammation, hallmarks of ARDs. Kaempferol's low toxicity and wide safety margins, as demonstrated by preclinical and clinical studies, further substantiate its therapeutic potential. Compelling evidence supports Kaempferol's substantial potential in addressing ARDs through several mechanisms, notably anti-inflammatory, antioxidant, and anti-apoptotic actions. Kaempferol exhibits a versatile neuroprotective effect by modulating various proinflammatory signaling pathways, including NF-kB, p38MAPK, AKT, and the β-catenin cascade. Additionally, it hinders the formation and aggregation of beta-amyloid protein and regulates brain-derived neurotrophic factors. In terms of its anticancer potential, kaempferol acts through diverse pathways, inducing apoptosis, arresting the cell cycle at the G2/M phase, suppressing epithelial-mesenchymal transition (EMT)-related markers, and affecting the phosphoinositide 3-kinase/protein kinase B signaling pathways. Subsequent studies should focus on refining dosage regimens, exploring innovative delivery systems, and conducting comprehensive clinical trials to translate these findings into effective therapeutic applications.
  9. Kumarasamy V, Kuppusamy UR, Jayalakshmi P, Govind SK
    Exp Parasitol, 2023 Aug;251:108564.
    PMID: 37308003 DOI: 10.1016/j.exppara.2023.108564
    Blastocystis is an enteric protozoan parasite with extensive genetic variation and unclear pathogenicity. It is commonly associated with gastrointestinal symptoms such as nausea, diarrhea, vomiting and abdominal pain in immunocompromised individuals. In this study, we explored the in vitro and in vivo effects of Blastocystis on the activity of a commonly used CRC chemotherapeutic agent, 5-FU. The cellular and molecular effects of solubilized antigen of Blastocystis in the presence of 5-FU were investigated using HCT116, human CRC cell line and CCD 18-Co, normal human colon fibroblast cells. For the in vivo study, 30 male Wistar rats were divided into six groups, as follows; Control Group: oral administration of 0.3 ml Jones' medium, Group A: rats injected with azoxymethane (AOM), Group A-30FU: Rats injected with AOM and administered 30 mg/kg 5-FU, Group B-A-30FU: rats inoculated with Blastocystis cysts, injected with AOM and administered 30 mg/kg 5-FU, Group A-60FU: rats injected with AOM and administered 60 mg/kg 5-FU and Group B-A-60FU: rats inoculated with Blastocystis cysts, injected with AOM and administered 60 mg/kg 5-FU. The in vitro study revealed that the inhibitory potency of 5-FU at 8 μM and 10 μM was reduced from 57.7% to 31.6% (p 
  10. Dhar J, Hazra A, Patra R, Kumar V, Subramaniyan V, Kumarasamy V, et al.
    Front Microbiol, 2023;14:1280120.
    PMID: 38274748 DOI: 10.3389/fmicb.2023.1280120
    INTRODUCTION: The research focuses on Rhododendron ferrugineum L., Nepal's national flower and Uttarakhand's state tree, thriving in high-altitude mountain ecosystems.

    METHODOLOGY AND RESULT: A study conducted in Himachal Pradesh (Latitude: N 31° 6' 2.0088", Longitude: E 77° 10' 29.9136") identified leaf anomalies resembling rust-like manifestations in R. ferrugineum. These anomalies were traced back to the pathogenic fungus Curvularia tuberculata, marking the first documented case of its impact on R. ferrugineum in India.

    DISCUSSION: This discovery emphasizes the need for vigilant monitoring, disease management research, and conservation efforts to protect the cultural and ecological significance of this iconic shrub. Beyond its immediate findings, the study introduces a novel dimension to Indian flora by associating C. tuberculata with R. ferrugineum, historically linked to monocotyledonous crops. The research methodology combines traditional microscopic examination with advanced genomic sequencing and phylogenetic analysis, enhancing pathogen identification accuracy.

    FUTURE PROSPECT: In a broader context, this research aligns with the United Nations Sustainable Development Goals (SDGs) by highlighting the importance of environmental preservation, conservation, and sustainable management. It underscores the intricate interplay between biodiversity, cultural heritage, and the need for holistic solutions. Overall, this study calls for proactive measures to protect R. ferrugineum's cultural and ecological heritage and emphasizes the significance of interdisciplinary approaches in addressing emerging ecological threats.

  11. Mukhopadhyay M, Mukherjee A, Ganguli S, Chakraborti A, Roy S, Choudhury SS, et al.
    Front Microbiol, 2023;14:1293302.
    PMID: 38156003 DOI: 10.3389/fmicb.2023.1293302
    Microorganisms are integral components of ecosystems, exerting profound impacts on various facets of human life. The recent United Nations General Assembly (UNGA) Science Summit emphasized the critical importance of comprehending the microbial world to address global challenges, aligning with the United Nations Sustainable Development Goals (SDGs). In agriculture, microbes are pivotal contributors to food production, sustainable energy, and environmental bioremediation. However, decades of agricultural intensification have boosted crop yields at the expense of soil health and microbial diversity, jeopardizing global food security. To address this issue, a study in West Bengal, India, explored the potential of a novel multi-strain consortium of plant growth promoting (PGP) Bacillus spp. for soil bioaugmentation. These strains were sourced from the soil's native microbial flora, offering a sustainable approach. In this work, a composite inoculum of Bacillus zhangzhouensis MMAM, Bacillus cereus MMAM3), and Bacillus subtilis MMAM2 were introduced into an over-exploited agricultural soil and implications on the improvement of vegetative growth and yield related traits of Gylcine max (L) Meril. plants were evaluated, growing them as model plant, in pot trial condition. The study's findings demonstrated significant improvements in plant growth and soil microbial diversity when using the bacterial consortium in conjunction with vermicompost. Metagenomic analyses revealed increased abundance of many functional genera and metabolic pathways in consortium-inoculated soil, indicating enhanced soil biological health. This innovative bioaugmentation strategy to upgrade the over-used agricultural soil through introduction of residual PGP bacterial members as consortia, presents a promising path forward for sustainable agriculture. The rejuvenated patches of over-used land can be used by the small and marginal farmers for cultivation of resilient crops like soybean. Recognizing the significance of multi-strain PGP bacterial consortia as potential bioinoculants, such technology can bolster food security, enhance agricultural productivity, and mitigate the adverse effects of past agricultural activities.
  12. Perveen K, Bukhari NA, Alshaikh NA, Kondaveeti SB, Alsulami JA, Debnath S, et al.
    Front Microbiol, 2024;15:1304234.
    PMID: 38646635 DOI: 10.3389/fmicb.2024.1304234
    BACKGROUND: Microorganisms are crucial in our ecosystem, offering diverse functions and adaptability. The UNGA Science Summit has underscored the importance of understanding microbes in alignment with the UN Sustainable Development Goals. Bacillus anthracis poses significant challenges among various microorganisms due to its harmful effects on both soil and public health. Our study employed computational techniques to investigate the inhibitory effects of curcumin and mangiferin on Bacillus anthracis, with the aim of presenting a novel bio-based approach to microbial management.

    METHODS: Employing high-throughput screening, we identified potential binding sites on B. anthracis. Molecular docking revealed that curcumin and mangiferin, when synergistically combined, exhibited strong binding affinities at different sites on the bacterium. Our findings demonstrated a significant drop in binding free energy, indicating a stronger interaction when these compounds were used together.

    FINDINGS: Results of Molecular docking indicated binding energies of -8.45 kcal/mol for mangiferin, -7.68 kcal/mol for curcumin, and a notably higher binding energy of -19.47 kcal/mol for the combination of mangiferin and curcumin with CapD protein. Molecular dynamics simulations further validated these interactions, demonstrating increased stability and structural changes in the bacterium.

    CONCLUSION: This study highlights the effectiveness of natural compounds like curcumin and mangiferin in microbial management, especially against challenging pathogens like B. anthracis. It emphasizes the potential of sustainable, nature-based solutions and calls for further empirical research to expand upon these findings.

  13. Khan F, Joshi A, Devkota HP, Subramaniyan V, Kumarasamy V, Arora J
    Front Pharmacol, 2023;14:1214881.
    PMID: 37554984 DOI: 10.3389/fphar.2023.1214881
    Alzheimer's disease (AD) is the most prevalent form of dementia affecting millions of people worldwide. It is a progressive, irreversible, and incurable neurodegenerative disorder that disrupts the synaptic communication between millions of neurons, resulting in neuronal death and functional loss due to the abnormal accumulation of two naturally occurring proteins, amyloid β (Aβ) and tau. According to the 2018 World Alzheimer's Report, there is no single case of an Alzheimer's survivor; even 1 in 3 people die from Alzheimer's disease, and it is a growing epidemic across the globe fruits and vegetables rich in glucosinolates (GLCs), the precursors of isothiocyanates (ITCs), have long been known for their pharmacological properties and recently attracted increased interest for the possible prevention and treatment of neurodegenerative diseases. Epidemiological evidence from systematic research findings and clinical trials suggests that nutritional and functional dietary isothiocyanates interfere with the molecular cascades of Alzheimer's disease pathogenesis and prevent neurons from functional loss. The aim of this review is to explore the role of glucosinolates derived isothiocyanates in various molecular mechanisms involved in the progression of Alzheimer's disease and their potential in the prevention and treatment of Alzheimer's disease. It also covers the chemical diversity of isothiocyanates and their detailed mechanisms of action as reported by various in vitro and in vivo studies. Further clinical studies are necessary to evaluate their pharmacokinetic parameters and effectiveness in humans.
  14. Alharbi HM, Alqahtani T, Alamri AH, Kumarasamy V, Subramaniyan V, Babu KS
    Front Pharmacol, 2023;14:1276209.
    PMID: 38239204 DOI: 10.3389/fphar.2023.1276209
    Background: Ovarian cancer, colloquially termed the "silent killer" among gynecological malignancies, remains elusive due to its often-asymptomatic progression and diagnostic challenges. Central to its pathogenesis is the overactive PI3K/Akt/mTOR signaling pathway, responsible for various cellular functions, from proliferation to survival. Within this context, the phytochemical compounds mangiferin (derived from Mangifera indica) and curcumin (from Curcuma longa) stand out for their potential modulatory effects. However, their inherent bioavailability challenges necessitate innovative delivery systems to maximize therapeutic benefits. Objective: This study seeks to synergize the merits of nanotechnology with the therapeutic properties of mangiferin and curcumin, aiming to bolster their efficacy against ovarian cancer. Methods: Employing specific nanotechnological principles, we engineered exosomal and liposomal nano-carriers for mangiferin and curcumin, targeting the PI3K/Akt/mTOR pathway. Molecular docking techniques mapped the interactions of these phytochemicals with key proteins in the pathway, analyzing their binding efficiencies. Furthermore, molecular dynamics simulations, spanning 100 nanoseconds, verified these interactions, with additional computational methodologies further validating our findings. The rationale for the 100 nanoseconds time span lies in its sufficiency to observe meaningful protein-ligand interactions and conformational changes. Notably, liposomal technology provided an enhancement in drug delivery by protecting these compounds from degradation, allowing controlled release, and improving cellular uptake. Results: Our computational investigations demonstrated notable binding affinities of mangiferin and curcumin: PI3K at -11.20 kcal/mol, Akt at -15.16 kcal/mol, and mTOR at -10.24 kcal/mol. The adoption of exosome/liposome-mediated delivery significantly amplified the bioavailability and cellular uptake of these nano-formulated compounds, positioning them as potential stalwarts in ovarian cancer intervention. A brief explanation of exosome/liposome-mediated delivery involves the use of these vesicles to encapsulate and transport therapeutic agents directly to the target cells, enhancing drug delivery efficiency and minimizing side effects. Conclusion: Addressing ovarian cancer's intricacies, dominated by the erratic PI3K/Akt/mTOR signaling, mandates innovative therapeutic strategies. Our pioneering approach converges nanotechnological liposomal delivery with mangiferin and curcumin's natural efficacies. This confluence, validated by computational insights, heralds a paradigm shift in ovarian cancer treatment. As our findings underscore the collaborative potential of these phytochemicals, it beckons further exploration in translational studies and clinical applications, ensuring the best intersection of nature and technology for therapeutic advantage.
  15. Gangwal A, Ansari A, Ahmad I, Azad AK, Kumarasamy V, Subramaniyan V, et al.
    Front Pharmacol, 2024;15:1331062.
    PMID: 38384298 DOI: 10.3389/fphar.2024.1331062
    There are two main ways to discover or design small drug molecules. The first involves fine-tuning existing molecules or commercially successful drugs through quantitative structure-activity relationships and virtual screening. The second approach involves generating new molecules through de novo drug design or inverse quantitative structure-activity relationship. Both methods aim to get a drug molecule with the best pharmacokinetic and pharmacodynamic profiles. However, bringing a new drug to market is an expensive and time-consuming endeavor, with the average cost being estimated at around $2.5 billion. One of the biggest challenges is screening the vast number of potential drug candidates to find one that is both safe and effective. The development of artificial intelligence in recent years has been phenomenal, ushering in a revolution in many fields. The field of pharmaceutical sciences has also significantly benefited from multiple applications of artificial intelligence, especially drug discovery projects. Artificial intelligence models are finding use in molecular property prediction, molecule generation, virtual screening, synthesis planning, repurposing, among others. Lately, generative artificial intelligence has gained popularity across domains for its ability to generate entirely new data, such as images, sentences, audios, videos, novel chemical molecules, etc. Generative artificial intelligence has also delivered promising results in drug discovery and development. This review article delves into the fundamentals and framework of various generative artificial intelligence models in the context of drug discovery via de novo drug design approach. Various basic and advanced models have been discussed, along with their recent applications. The review also explores recent examples and advances in the generative artificial intelligence approach, as well as the challenges and ongoing efforts to fully harness the potential of generative artificial intelligence in generating novel drug molecules in a faster and more affordable manner. Some clinical-level assets generated form generative artificial intelligence have also been discussed in this review to show the ever-increasing application of artificial intelligence in drug discovery through commercial partnerships.
  16. Rajan N, Debnath S, Perveen K, Khan F, Pandey B, Srivastava A, et al.
    Front Plant Sci, 2023;14:1238870.
    PMID: 37719210 DOI: 10.3389/fpls.2023.1238870
    INTRODUCTION: This study explored the molecular characterization of 14 eggplant (brinjal) genotypes to evaluate their genetic diversity and the impact of heterosis. As eggplant is a vital horticultural crop with substantial economic and nutritional value, a comprehensive understanding of its genetic makeup and heterosis effects is essential for effective breeding strategies. Our aim was not only to dissect the genetic diversity among these genotypes but also to determine how genetic distance impacts heterotic patterns, which could ultimately help improve hybrid breeding programs.

    METHODS: Genetic diversity was assessed using 20 SSR markers, and the parental lines were grouped into five clusters based on the Unweighted Pair Group Method of Arithmetic Means (UPGMA). Heterosis was examined through yield and yield-related traits among parents and hybrids.

    RESULTS: Polymorphisms were detected in eight out of the twenty SSR markers across the parental lines. Notably, a high genetic distance was observed between some parents. The analysis of yield and yield-related traits demonstrated significant heterosis over mid, superior, and standard parents, particularly in fruit yield per plant. Two crosses (RKML-26 X PPC and RKML1 X PPC) displayed substantial heterosis over mid and better parents, respectively. However, the positive correlation between genetic distance and heterosis was only up to a certain threshold; moderate genetic distance often resulted in higher heterosis compared to very high genetic distance.

    DISCUSSION: These findings emphasize the critical role of parental selection in hybrid breeding programs. The results contribute to the understanding of the relationship between genetic distance and heterosis, and it is suggested that future research should delve into the genetic mechanisms that drive heterosis and the effect of genetic distance variance on heterosis. The insights drawn from this study can be harnessed to enhance crop yield and economic value in breeding programs.

  17. Debnath S, Elgorban AM, Bahkali AH, Eswaramoorthy R, Verma M, Syed A, et al.
    Front Plant Sci, 2024;15:1255979.
    PMID: 38481405 DOI: 10.3389/fpls.2024.1255979
    BACKGROUND: Brassica oleracea var. botrytis is an annual or biennial herbaceous vegetable plant in the Brassicaceae family notable for its edible blossom head. A lot of effort has gone into finding defense-associated proteins in order to better understand how cauliflower and pathogens interact. Endophytes are organisms that live within the host plant and reproduce. Endophytes are bacteria and fungi that reside in plant tissues and can either help or harm the plant. Several species have aided molecular biologists and plant biotechnologists in various ways. Water is essential for a healthy cauliflower bloom. When the weather is hot, this plant dries up, and nitrogen scarcity can be detrimental to cauliflower growth.

    OBJECTIVE: The study sought to discern plant growth promoting (PGP) compounds that can amplify drought resilience and boost productivity in cauliflower.

    METHODS: Investigations were centered on endophytes, microorganisms existing within plant tissues. The dual role of beneficial and detrimental Agrobacterium was scrutinized, particularly emphasizing the ethylene precursor compound, 1-amino-cyclopropane-1-carboxylic acid (ACCA).

    RESULTS: ACCA possessed salient PGP traits, particularly demonstrating a pronounced enhancement of drought resistance in cauliflower plants. Specifically, during the pivotal marketable curd maturity phase, which necessitates defense against various threats, ACCA showcased a binding energy of -8.74 kcal/mol.

    CONCLUSION: ACCA holds a significant promise in agricultural productivity, with its potential to boost drought resistance and cauliflower yield. This could be particularly impactful for regions grappling with high temperatures and possible nitrogen shortages. Future research should explore ACCA's performance under diverse environmental settings and its applicability in other crops.

  18. Azzani M, Atroosh WM, Anbazhagan D, Kumarasamy V, Abdalla MMI
    Front Public Health, 2023;11:1266533.
    PMID: 38229668 DOI: 10.3389/fpubh.2023.1266533
    BACKGROUND: There is limited evidence of financial toxicity (FT) among cancer patients from countries of various income levels. Hence, this study aimed to determine the prevalence of objective and subjective FT and their measurements in relation to cancer treatment.

    METHODS: PubMed, Science Direct, Scopus, and CINAHL databases were searched to find studies that examined FT. There was no limit on the design or setting of the study. Random-effects meta-analysis was utilized to obtain the pooled prevalence of objective FT.

    RESULTS: Out of 244 identified studies during the initial screening, only 64 studies were included in this review. The catastrophic health expenditure (CHE) method was often used in the included studies to determine the objective FT. The pooled prevalence of CHE was 47% (95% CI: 24.0-70.0) in middle- and high-income countries, and the highest percentage was noted in low-income countries (74.4%). A total of 30 studies focused on subjective FT, of which 9 used the Comprehensive Score for FT (COST) tool and reported median scores ranging between 17.0 and 31.9.

    CONCLUSION: This study shows that cancer patients from various income-group countries experienced a significant financial burden during their treatment. It is imperative to conduct further studies on interventions and policies that can lower FT caused by cancer treatment.

  19. Edib Z, Kumarasamy V, Binti Abdullah N, Rizal AM, Al-Dubai SA
    PMID: 26898558 DOI: 10.1186/s12955-016-0428-4
    Addressing breast cancer patients' unmet supportive care needs in the early stage of their survivorship have become a prime concern because of its significant association with poor quality of life (QOL), which in turn increases healthcare utilization and costs. There is no study about unmet supportive care needs of breast cancer patients in Malaysia. This study aims to assess the most prevalent unmet supportive care needs of Malaysian breast cancer patients and the association between QOL and patients' characteristics, and their unmet supportive care needs.
  20. Mujafarkani N, Ahamed FMM, Babu KS, Debnath S, Sayed AA, Albadrani GM, et al.
    Heliyon, 2023 Oct;9(10):e20459.
    PMID: 37810859 DOI: 10.1016/j.heliyon.2023.e20459
    In an innovative approach to push the boundaries of antimicrobial and antioxidant strategies, we present the synthesis and characterization of a novel terpolymer derived from N-Phenyl-p-phenylenediamine and 2-aminopyrimidine with formaldehyde in the presence of dimethylformamide as a reaction medium through polycondensation technique. Leveraging this terpolymer as a ligand, we introduce an intriguing terpolymer-metal complex, created with Ni (II) metal ion. In our pursuit to validate the structure and properties of these substances, we performed meticulous characterizations using important spectral studies such as FTIR, electronic, and 1H NMR spectroscopy. This provided us with a unique fingerprint for the (N-Phenyl-p-phenylenediamine-2-aminopyrimidine-formaldehyde) terpolymeric ligand (PAF) and its metal complex. In addition, the molecular weights of PAF terpolymer were established using gel permeation chromatography. Upon investigation, PAF terpolymer and PAF-Ni complex exhibited impressive antimicrobial activity, tested by the disc-diffusion technique. Both demonstrated potency against a range of harmful bacterial and fungal strains, including Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger. In an extension to their biological applications, we evaluated the free radical scavenging activity of PAF terpolymer and PAF-Ni complex using the DPPH assay. The complex PAF-Ni showcased an enhanced scavenging activity 73.94% (IC50 = 17.58) compared to the ligand PAF 63.06% (IC50 = 27.61) at 100 μg/ml indicating its potential role in oxidative stress management.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links