Displaying publications 1 - 20 of 46 in total

Abstract:
Sort:
  1. Thong KL, Bakeri SA, Lai KS, Koh YT, Taib MZ, Lim VK, et al.
    PMID: 15272750
    Pulsed field gel electrophoresis (PFGE) and antimicrobial susceptibility analysis were undertaken on twenty-three strains of Salmonella enterica serovar Tshiongwe, an unusual serovar, which recently emerged in Malaysia. Antimicrobial susceptibility analysis showed that all the strains were sensitive to ampicilin, chloramphenicol, cotrimoxazole, and kanamycin. Twenty (87%) and 8 (3.5%) strains had resistance to tetracycline and streptomycin respectively. PFGE analysis subtyped 23 strains into 10 profiles (Dice coefficient of similarity, F = 0.7-1.0). The predominant profile, X1 was found in both clinical and environmental isolates and was widely distributed in different parts of Malaysia during the study period. In addition, isolates recovered from food, a hand-towel, apron and the surface of a table-top in one particular location had unique, indistinguishable profiles (X4/4a) and identical antibiograms. Similarly, isolates from cooked meat and a chopping board had PFGE profiles similar to some human isolates. These probably indicated cross-contamination and poor hygiene in food practices, hence contributing to Salmonellosis. Factors causing the emergence of this rare Salmonella serovar being responsible for food poisoning episodes during the study period remained unclear. The study reiterated the usefulness and versatility of PFGE in the molecular subtyping of this rare Salmonella serovar in Malaysia.
  2. Chai CY, Maran S, Thew HY, Tan YC, Rahman NMANA, Cheng WH, et al.
    Biology (Basel), 2022 Nov 02;11(11).
    PMID: 36358305 DOI: 10.3390/biology11111604
    The Harvey rat sarcoma (HRAS) proto-oncogene belongs to the RAS family and is one of the pathogenic genes that cause cancer. Deleterious nsSNPs might have adverse consequences at the protein level. This study aimed to investigate deleterious nsSNPs in the HRAS gene in predicting structural alterations associated with mutants that disrupt normal protein-protein interactions. Functional and structural analysis was employed in analyzing the HRAS nsSNPs. Putative post-translational modification sites and the changes in protein-protein interactions, which included a variety of signal cascades, were also investigated. Five different bioinformatics tools predicted 33 nsSNPs as "pathogenic" or "harmful". Stability analysis predicted rs1554885139, rs770492627, rs1589792804, rs730880460, rs104894227, rs104894227, and rs121917759 as unstable. Protein-protein interaction analysis revealed that HRAS has a hub connecting three clusters consisting of 11 proteins, and changes in HRAS might cause signal cascades to dissociate. Furthermore, Kaplan-Meier bioinformatics analyses indicated that the HRAS gene deregulation affected the overall survival rate of patients with breast cancer, leading to prognostic significance. Thus, based on these analyses, our study suggests that the reported nsSNPs of HRAS may serve as potential targets for different proteomic studies, diagnoses, and therapeutic interventions focusing on cancer.
  3. Lim EC, Lim SW, Tan KJ, Sathiya M, Cheng WH, Lai KS, et al.
    Life (Basel), 2022 Jul 09;12(7).
    PMID: 35888106 DOI: 10.3390/life12071018
    Dysregulation of fibroblast growth factors is linked to the pathogenesis of bladder cancer. The role of FGF1 and FGF3 is evident in bladder cancer; however, the role of FGF4 is vague. Despite being reported that FGF4 interacts with FGF1 and FGF3 in MAPK pathways, its pathogenesis and mechanism of action are yet to be elucidated. Therefore, this study aimed to elucidate pathogenic nsSNPs and their role in the prognosis of bladder cancer by employing in-silico analysis. The nsSNPs of FGF4 were retrieved from the NCBI database. Different in silico tools, PROVEAN, SIFT, PolyPhen-2, SNPs&GO, and PhD-SNP, were used for predicting the pathogenicity of the nsSNPs. Twenty-seven nsSNPs were identified as “damaging”, and further stability analysis using I-Mutant 2.0 and MUPro indicated 22 nsSNPs to cause decreased stability (DDG scores < −0.5). Conservation analysis predicted that Q97K, G106V, N164S, and N167S were highly conserved and exposed. Biophysical characterisation indicated these nsSNPs were not tolerated, and protein-protein interaction analysis showed their involvement in the GFR-MAPK signalling pathway. Furthermore, Kaplan Meier bioinformatics analyses indicated that the FGF4 gene deregulation affected the overall survival rate of patients with bladder cancer, leading to prognostic significance. Thus, based on these analyses, our study suggests that the reported nsSNPs of FGF4 may serve as potential targets for diagnoses and therapeutic interventions focusing on bladder cancer.
  4. Maran S, Faten SA, Lim SE, Lai KS, Ibrahim WPW, Ankathil R, et al.
    Biomed Res Int, 2020;2020:6945730.
    PMID: 33062692 DOI: 10.1155/2020/6945730
    Background: The 22q11.2 deletion syndrome (22q11.2DS) is the most common form of deletion disorder in humans. Low copy repeats flanking the 22q11.2 region confers a substrate for nonallelic homologous recombination (NAHR) events leading to rearrangements which have been reported to be associated with highly variable and expansive phenotypes. The 22q11.2DS is reported as the most common genetic cause of congenital heart defects (CHDs).

    Methods: A total of 42 patients with congenital heart defects, as confirmed by echocardiography, were recruited. Genetic molecular analysis using a fluorescence in situ hybridization (FISH) technique was conducted as part of routine 22q11.2DS screening, followed by multiplex ligation-dependent probe amplification (MLPA), which serves as a confirmatory test.

    Results: Two of the 42 CHD cases (4.76%) indicated the presence of 22q11.2DS, and interestingly, both cases have conotruncal heart defects. In terms of concordance of techniques used, MLPA is superior since it can detect deletions within the 22q11.2 locus and outside of the typically deleted region (TDR) as well as duplications.

    Conclusion: The incidence of 22q11.2DS among patients with CHD in the east coast of Malaysia is 0.047. MLPA is a scalable and affordable alternative molecular diagnostic method in the screening of 22q11.2DS and can be routinely applied for the diagnosis of deletion syndromes.

  5. Maran S, Ee R, Faten SA, Sy Bing C, Khaw KY, Erin Lim SH, et al.
    PLoS One, 2020;15(4):e0230982.
    PMID: 32315303 DOI: 10.1371/journal.pone.0230982
    Atrial septal defect (ASD) is one of the most common congenital heart defects diagnosed in children. Sarcomeric genes has been attributed to ASD and knockdown of MYH3 functionally homologues gene in chick models indicated abnormal atrial septal development. Here, we report for the first time, a case-control study investigating the role of MYH3 among non-syndromic ASD patients in contributing to septal development. Four amplicons which will amplifies the 40 kb MYH3 were designed and amplified using long range-PCR. The amplicons were then sequenced using indexed paired-end libraries on the MiSeq platform. The STREGA guidelines were applied for planning and reporting. The non-synonymous c. 3574G>A (p.Ala1192Thr) [p = 0.001, OR = 2.30 (1.36-3.87)] located within the tail domain indicated a highly conserved protein region. The mutant model of c. 3574G>A (p.Ala1192Thr) showed high root mean square deviation (RMSD) values compared to the wild model. To our knowledge, this is the first study to provide compelling evidence on the pathogenesis of MYH3 variants towards ASD hence, suggesting the crucial role of non-synonymous variants in the tail domain of MYH3 towards atrial septal development. It is hoped that this gene can be used as panel for diagnosis of ASD in future.
  6. Alafiatayo AA, Lai KS, Ahmad S, Mahmood M, Shaharuddin NA
    Genomics, 2020 01;112(1):484-493.
    PMID: 30946891 DOI: 10.1016/j.ygeno.2019.03.011
    Exposing the skin to solar UV radiation induces cascades of signaling pathways and biological alterations such as redox imbalance, suppression of antioxidant genes and programmed cell death. Therefore, the aim of this study was to use RNA-Seq to unravel the effects of UV radiation on Normal Human Adult Fibroblast cells (NHDF). Cells were exposed to UV (20 mJ/cm2 for 3 mins) and incubated for 24 h. Total mRNA from the cells generated libraries of 72,080,648 and 40,750,939 raw reads from UV-treated and control cells respectively. Of the differentially expressed genes (DEGs) produced 2,007 were up-regulated and 2,791 were down-regulated (fold change ≥2, p 
  7. Alafiatayo AA, Lai KS, Syahida A, Mahmood M, Shaharuddin NA
    PMID: 30949217 DOI: 10.1155/2019/3807207
    Curcuma longa L. is a rhizome plant often used as traditional medicinal preparations in Southeast Asia. The dried powder is commonly known as cure-all herbal medicine with a wider spectrum of pharmaceutical activities. In spite of the widely reported therapeutic applications of C. longa, research on its safety and teratogenic effects on zebrafish embryos and larvae is still limited. Hence, this research aimed to assess the toxicity of C. longa extract on zebrafish. Using a reflux flask, methanol extract of C. longa was extracted and the identification and quantification of total flavonoids were carried out with HPLC. Twelve fertilized embryos were selected to test the embryotoxicity and teratogenicity at different concentration points. The embryos were exposed to the extract in the E3M medium while the control was only exposed to E3M and different developmental endpoints were recorded with the therapeutic index calculated using the ratio of LC50/EC50. C. longa extract was detected to be highly rich in flavonoids with catechin, epicatechin, and naringenin as the 3 most abundant with concentrations of 3,531.34, 688.70, and 523.83μg/mL, respectively. The toxicity effects were discovered to be dose-dependent at dosage above 62.50μg/mL, while, at 125.0μg/mL, mortality of embryos was observed and physical body deformities of larvae were recorded among the hatched embryos at higher concentrations. Teratogenic effect of the extract was severe at higher concentrations producing physical body deformities such as kink tail, bend trunk, and enlarged yolk sac edema. Finally, the therapeutic index (TI) values calculated were approximately the same for different concentration points tested. Overall, the result revealed that plants having therapeutic potential could also pose threats when consumed at higher doses especially on the embryos. Therefore, detailed toxicity analysis should be carried out on medicinal plants to ascertain their safety on the embryos and its development.
  8. Thong KL, Lai KS, Ganeswrie R, Puthucheary SD
    Jpn J Infect Dis, 2004 Oct;57(5):206-9.
    PMID: 15507777
    Over a period of 6 months from January to June 2002, an unusual increase in the isolation of highly resistant Pseudomonas aeruginosa strains was observed in the various wards and intensive care units of a large general hospital in Johor Bahru, Malaysia. An equal number of multidrug resistant (MDR) and drug-susceptible strains were collected randomly from swabs, respiratory specimens, urine, blood, cerebral spinal fluid, and central venous catheters to determine the clonality and genetic variation of the strains. Macrorestriction analysis by pulsed-field gel electrophoresis showed that the 19 MDR strains were genetically very homogenous; the majority showed the dominant profile S1 (n = 10), the rest very closely related profiles S1a (n = 1), S2 (n = 4), and S2a (n = 3), indicating the endemicity of these strains. In contrast, the 19 drug-sensitive strains isolated during the same time period were genetically more diverse, showing 17 pulsed-field profiles (F = 0.50-1.00), and probably derived from the patients themselves. The presence of the MDR clone poses serious therapeutic problems as it may become endemic in the hospital and give rise to future clonal outbreaks. There is also the potential for wider geographical spread.
  9. Loh HY, Norman BP, Lai KS, Rahman NMANA, Alitheen NBM, Osman MA
    Int J Mol Sci, 2019 Oct 06;20(19).
    PMID: 31590453 DOI: 10.3390/ijms20194940
    MicroRNAs (miRNAs) are small non-coding RNA molecules which function as critical post-transcriptional gene regulators of various biological functions. Generally, miRNAs negatively regulate gene expression by binding to their selective messenger RNAs (mRNAs), thereby leading to either mRNA degradation or translational repression, depending on the degree of complementarity with target mRNA sequences. Aberrant expression of these miRNAs has been linked etiologically with various human diseases including breast cancer. Different cellular pathways of breast cancer development such as cell proliferation, apoptotic response, metastasis, cancer recurrence and chemoresistance are regulated by either the oncogenic miRNA (oncomiR) or tumor suppressor miRNA (tsmiR). In this review, we highlight the current state of research into miRNA involved in breast cancer, with particular attention to articles published between the years 2000 to 2019, using detailed searches of the databases PubMed, Google Scholar, and Scopus. The post-transcriptional gene regulatory roles of various dysregulated miRNAs in breast cancer and their potential as therapeutic targets are also discussed.
  10. Ashaari NS, Ab Rahim MH, Sabri S, Lai KS, Song AA, Abdul Rahim R, et al.
    PLoS One, 2020;15(7):e0235416.
    PMID: 32614884 DOI: 10.1371/journal.pone.0235416
    Plectranthus amboinicus (Lour.) Spreng is an aromatic medicinal herb known for its therapeutic and nutritional properties attributed by the presence of monoterpene and sesquiterpene compounds. Up until now, research on terpenoid biosynthesis has focused on a few mint species with economic importance such as thyme and oregano, yet the terpene synthases responsible for monoterpene production in P. amboinicus have not been described. Here we report the isolation, heterologous expression and functional characterization of a terpene synthase involved in P. amboinicus terpenoid biosynthesis. A putative monoterpene synthase gene (PamTps1) from P. amboinicus was isolated with an open reading frame of 1797 bp encoding a predicted protein of 598 amino acids with molecular weight of 69.6 kDa. PamTps1 shares 60-70% amino acid sequence similarity with other known terpene synthases of Lamiaceae. The in vitro enzymatic activity of PamTps1 demonstrated the conversion of geranyl pyrophosphate and farnesyl pyrophosphate exclusively into linalool and nerolidol, respectively, and thus PamTps1 was classified as a linalool/nerolidol synthase. In vivo activity of PamTps1 in a recombinant Escherichia coli strain revealed production of linalool and nerolidol which correlated with its in vitro activity. This outcome validated the multi-substrate usage of this enzyme in producing linalool and nerolidol both in in vivo and in vitro systems. The transcript level of PamTps1 was prominent in the leaf during daytime as compared to the stem. Gas chromatography-mass spectrometry (GC-MS) and quantitative real-time PCR analyses showed that maximal linalool level was released during the daytime and lower at night following a diurnal circadian pattern which correlated with the PamTps1 expression pattern. The PamTps1 cloned herein provides a molecular basis for the terpenoid biosynthesis in this local herb that could be exploited for valuable production using metabolic engineering in both microbial and plant systems.
  11. Ashaari NS, Ab Rahim MH, Sabri S, Lai KS, Song AA, Abdul Rahim R, et al.
    Sci Rep, 2021 Aug 24;11(1):17094.
    PMID: 34429465 DOI: 10.1038/s41598-021-96524-z
    Linalool and nerolidol are terpene alcohols that occur naturally in many aromatic plants and are commonly used in food and cosmetic industries as flavors and fragrances. In plants, linalool and nerolidol are biosynthesized as a result of respective linalool synthase and nerolidol synthase, or a single linalool/nerolidol synthase. In our previous work, we have isolated a linalool/nerolidol synthase (designated as PamTps1) from a local herbal plant, Plectranthus amboinicus, and successfully demonstrated the production of linalool and nerolidol in an Escherichia coli system. In this work, the biochemical properties of PamTps1 were analyzed, and its 3D homology model with the docking positions of its substrates, geranyl pyrophosphate (C10) and farnesyl pyrophosphate (C15) in the active site were constructed. PamTps1 exhibited the highest enzymatic activity at an optimal pH and temperature of 6.5 and 30 °C, respectively, and in the presence of 20 mM magnesium as a cofactor. The Michaelis-Menten constant (Km) and catalytic efficiency (kcat/Km) values of 16.72 ± 1.32 µM and 9.57 × 10-3 µM-1 s-1, respectively, showed that PamTps1 had a higher binding affinity and specificity for GPP instead of FPP as expected for a monoterpene synthase. The PamTps1 exhibits feature of a class I terpene synthase fold that made up of α-helices architecture with N-terminal domain and catalytic C-terminal domain. Nine aromatic residues (W268, Y272, Y299, F371, Y378, Y379, F447, Y517 and Y523) outlined the hydrophobic walls of the active site cavity, whilst residues from the RRx8W motif, RxR motif, H-α1 and J-K loops formed the active site lid that shielded the highly reactive carbocationic intermediates from the solvents. The dual substrates use by PamTps1 was hypothesized to be possible due to the architecture and residues lining the catalytic site that can accommodate larger substrate (FPP) as demonstrated by the protein modelling and docking analysis. This model serves as a first glimpse into the structural insights of the PamTps1 catalytic active site as a multi-substrate linalool/nerolidol synthase.
  12. Zaidi NE, Shazali NAH, Leow TC, Osman MA, Ibrahim K, Cheng WH, et al.
    Cells, 2022 Nov 10;11(22).
    PMID: 36428985 DOI: 10.3390/cells11223556
    Tumour heterogeneity refers to the complexity of cell subpopulations coexisting within the tumour microenvironment (TME), such as proliferating tumour cells, tumour stromal cells and infiltrating immune cells. The bidirectional interactions between cancer and the surrounding microenvironment mark the tumour survival and promotion functions, which allow the cancer cells to become invasive and initiate the metastatic cascade. Importantly, these interactions have been closely associated with metabolic reprogramming, which can modulate the differentiation and functions of immune cells and thus initiate the antitumour response. The purpose of this report is to review the CD36 receptor, a prominent cell receptor in metabolic activity specifically in fatty acid (FA) uptake, for the metabolic symbiosis of cancer-macrophage. In this review, we provide an update on metabolic communication between tumour cells and macrophages, as well as how the immunometabolism indirectly orchestrates the tumour metastasis.
  13. Alessandro L, Low KE, Abushelaibi A, Lim SE, Cheng WH, Chang SK, et al.
    Int J Mol Sci, 2022 Nov 18;23(22).
    PMID: 36430761 DOI: 10.3390/ijms232214285
    The diagnosis of endometrial cancer involves sequential, invasive tests to assess the thickness of the endometrium by a transvaginal ultrasound scan. In 6−33% of cases, endometrial biopsy results in inadequate tissue for a conclusive pathological diagnosis and 6% of postmenopausal women with non-diagnostic specimens are later discovered to have severe endometrial lesions. Thus, identifying diagnostic biomarkers could offer a non-invasive diagnosis for community or home-based triage of symptomatic or asymptomatic women. Herein, this study identified high-risk pathogenic nsSNPs in the NRAS gene. The nsSNPs of NRAS were retrieved from the NCBI database. PROVEAN, SIFT, PolyPhen-2, SNPs&GO, PhD-SNP and PANTHER were used to predict the pathogenicity of the nsSNPs. Eleven nsSNPs were identified as “damaging”, and further stability analysis using I-Mutant 2.0 and MutPred 2 indicated eight nsSNPs to cause decreased stability (DDG scores < −0.5). Post-translational modification and protein−protein interactions (PPI) analysis showed putative phosphorylation sites. The PPI network indicated a GFR-MAPK signalling pathway with higher node degrees that were further evaluated for drug targets. The P34L, G12C and Y64D showed significantly lower binding affinity towards GTP than wild-type. Furthermore, the Kaplan−Meier bioinformatics analyses indicated that the NRAS gene deregulation affected the overall survival rate of patients with endometrial cancer, leading to prognostic significance. Findings from this could be considered novel diagnostic and therapeutic markers.
  14. Xing SY, Wei LQ, Abushelaibi A, Lai KS, Lim SHE, Maran S
    Drug Target Insights, 2022;16:88-96.
    PMID: 36761068 DOI: 10.33393/dti.2022.2522
    INTRODUCTION:: Detection and diagnosis of methicillin-resistant Staphylococcus aureus (MRSA) are important in ensuring a correct and effective treatment, further reducing its spread. A wide range of molecular approaches has been used for the diagnosis of antimicrobial resistance (AMR) in MRSA. This review aims to study and appraise widely used molecular diagnostic methods for detecting MRSA.

    METHODS:: This meta-narrative review was performed by searching PubMed using the following search terms: (molecular diagnosis) AND (antimicrobial resistance) AND (methicillin-resistant Staphylococcus aureus). Studies using molecular diagnostic techniques for the detection of MRSA were included, while non-English language, duplicates and non-article studies were excluded. After reviewing the libraries and a further manual search, 20 studies were included in this article. RAMESES publication standard for narrative reviews was used for this synthesis.

    RESULTS:: A total of 20 full papers were reviewed and appraised in this synthesis, consisting of PCR technique (n = 7), deoxyribonucleic acid (DNA) Microarray (n = 1), DNA sequencing (n = 2), Xpert MRSA/SA BC assay (n = 2), matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) (n = 2), MLST (n = 4), SCCmec typing (n = 1) and GENECUBE (n = 1).

    DISCUSSION:: Different diagnostic methods used to diagnose MRSA have been studied in this review. This study concludes that PCR has been extensively used due to its higher sensitivity and cost-effectiveness in the past five years

  15. Hii LW, Lim SE, Leong CO, Chin SY, Tan NP, Lai KS, et al.
    BMC Complement Altern Med, 2019 Sep 14;19(1):257.
    PMID: 31521140 DOI: 10.1186/s12906-019-2663-9
    BACKGROUND: Clinacanthus nutans extracts have been consumed by the cancer patients with the hope that the extracts can kill cancers more effectively than conventional chemotherapies. Our previous study reported its anti-inflammatory effects were caused by inhibiting Toll-like Receptor-4 (TLR-4) activation. However, we are unsure of its anticancer effect, and its interaction with existing chemotherapy.

    METHODS: We investigated the anti-proliferative efficacy of polar leaf extracts (LP), non-polar leaf extracts (LN), polar stem extract (SP) and non-polar stem extracts (SN) in human breast, colorectal, lung, endometrial, nasopharyngeal, and pancreatic cancer cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT assay. The most potent extracts was tested along with gemcitabine using our established drug combination analysis. The effect of the combinatory treatment in apoptosis were quantified using enzyme-linked immunosorbent assay (ELISA), Annexin V assay, antibody array and immunoblotting. Statistical significance was analysed using one-way analysis of variance (ANOVA) and post hoc Dunnett's test. A p-value of less than 0.05 (p 

  16. Teh CY, Ho CL, Shaharuddin NA, Lai KS, Mahmood M
    3 Biotech, 2019 Mar;9(3):101.
    PMID: 30800612 DOI: 10.1007/s13205-019-1615-x
    Proteomic analysis was conducted to identify the rice root proteins induced by exogenous proline and their involvement in root growth. Proteins were extracted from the root tissues grown under two conditions, T1 (control) and T2 (10 mM proline), and profiled by two-dimensional polyacrylamide gel electrophoresis. Seventeen of 30 differentially expressed proteins were identified by mass spectrometry. Proline-treated rice roots showed up-regulation and down-regulation of nine and eight proteins, respectively, when compared to those in the control. Among the differentially expressed proteins, the down-regulation of glutathione reductase and peroxidase could be involved in the regulation of cellular hydrogen peroxide and reactive oxygen species levels that modulate the root cell wall structure. Differentially expressed proteins identified as pathogenesis-related proteins might be related to stress adaptive mechanisms in response to exogenous proline treatment. In addition, differentially expressed protein identified as the fructose-bisphosphate aldolases and cytochrome c oxidase might be associated with energy metabolism, which is needed during root developmental process. This is the first attempt to study the changes in rice root proteome treated with proline. The acquired information could open new avenues for further functional studies on the involvement of proline in modulating root development and its relation to stress adaptation of plants.
  17. Pang EL, Peyret H, Ramirez A, Loh HS, Lai KS, Fang CM, et al.
    Front Plant Sci, 2019;10:455.
    PMID: 31057572 DOI: 10.3389/fpls.2019.00455
    Dengue fever is currently ranked as the top emerging tropical disease, driven by increased global travel, urbanization, and poor hygiene conditions as well as global warming effects which facilitate the spread of Aedes mosquitoes beyond their current distribution. Today, more than 100 countries are affected most of which are tropical Asian and Latin American nations with limited access to medical care. Hence, the development of a dengue vaccine that is dually cost-effective and able to confer a comprehensive protection is ultimately needed. In this study, a consensus sequence of the antigenic dengue viral glycoprotein domain III (cEDIII) was used aiming to provide comprehensive coverage against all four circulating dengue viral serotypes and potential clade replacement event. Utilizing hepatitis B tandem core technology, the cEDIII sequence was inserted into the immunodominant c/e1 loop region so that it could be displayed on the spike structures of assembled particles. The tandem core particles displaying cEDIII epitopes (tHBcAg-cEDIII) were successfully produced in Nicotiana benthamiana via Agrobacterium-mediated transient expression strategy to give a protein of ∼54 kDa, detected in both soluble and insoluble fractions of plant extracts. The assembled tHBcAg-cEDIII virus-like particles (VLPs) were also visualized from transmission electron microscopy. These VLPs had diameters that range from 32 to 35 nm, presenting an apparent size increment as compared to tHBcAg control particles without cEDIII display (namely tEL). Mice immunized with tHBcAg-cEDIII VLPs showed a positive seroconversion to cEDIII antigen, thereby signifying that the assembled tHBcAg-cEDIII VLPs have successfully displayed cEDIII antigen to the immune system. If it is proven to be successful, tHBcAg-cEDIII has the potential to be developed as a cost-effective vaccine candidate that confers a simultaneous protection against all four infecting dengue viral serotypes.
  18. Leong WH, Teh SY, Hossain MM, Nadarajaw T, Zabidi-Hussin Z, Chin SY, et al.
    J Environ Manage, 2020 Apr 15;260:109987.
    PMID: 32090796 DOI: 10.1016/j.jenvman.2019.109987
    This review intends to integrate the relevant information that is related to pesticide applications in food commodities and will cover three main sections. The first section encompasses some of the guidelines that have been implemented on management of pesticide application worldwide, such as the establishment of a value called Maximum Residue Level (MRL) through the application of Good Agricultural Practices (GAPs) into daily agricultural activities. A brief overview of the methods adopted in quantification of these trace residues in different food samples will also be covered. Briefly, pesticide analysis is usually performed in two stages: sample preparation and analytical instrumentation. Some of the preparation methods such as QuEChERs still remain as the technique of choice for most of the analytical scientists. In terms of the instrumentation such as the gas chromatography-mass spectrophotometry (GC-MS) and high performance-liquid chromatography (HPLC), these are still widely used, in spite of new inventions that are more sustainable and efficient such as the capillary electrophoresis (CE). Finally, the third section emphasizes on how pesticides can affect our health significantly whereby different types of pesticides result in different adverse health implications, despite its application benefits in agriculture in controlling pests. To date, there are limited reviews on pesticide usage in many agricultural-based nations; for the purpose of this review, Malaysia is selected to better illustrate pesticide regulations and implementation of policies. Finally, the review aims to provide an insight on how implementation of GAP and food safety assurance are inter-related and with this established correlation, to identify further measures for improvement to enable reinforcement of optimised agricultural practices specifically in these countries.
  19. Aljaafari MN, AlAli AO, Baqais L, Alqubaisy M, AlAli M, Molouki A, et al.
    Molecules, 2021 Jan 26;26(3).
    PMID: 33530290 DOI: 10.3390/molecules26030628
    The emergence of antimicrobial resistance (AMR) has urged researchers to explore therapeutic alternatives, one of which includes the use of natural plant products such as essential oils (EO). In fact, EO obtained from clove, oregano, thymus, cinnamon bark, rosemary, eucalyptus, and lavender have been shown to present significant inhibitory effects on bacteria, fungi, and viruses; many studies have been done to measure EO efficacy against microorganisms. The strategy of combinatory effects via conventional and non-conventional methods revealed that the combined effects of EO-EO or EO-antibiotic exhibit enhanced efficacy. This paper aims to review the antimicrobial effects of EO, modes of EO action (membrane disruption, efflux inhibition, increase membrane permeability, and decrease in intracellular ATP), and their compounds' potential as effective agents against bacteria, fungi, and viruses. It is hoped that the integration of EO applications in this work can be used to consider EO for future clinical applications.
  20. Foo RQ, Ahmad S, Lai KS, Idrus Z, Yusoff K, Liang JB
    Front Physiol, 2020;11:555122.
    PMID: 33071816 DOI: 10.3389/fphys.2020.555122
    One of the beneficial effects of non-digestible oligosaccharides (NDOs) is their anti-inflammatory effects on host animals. While conventional animal studies require that analysis be done after samples have been taken from the host, zebrafish larvae are optically transparent upon hatching and this provides an opportunity for observations to be made within the living zebrafish larvae. This study aimed to take advantage of the optical transparency of zebrafish larvae to study the nitric oxide (NO) reducing effects of NDOs through the use of lipopolysaccharide (LPS) from Salmonella enterica serovar (ser.) Enteritidis (S. Enteritidis) to induce cardiac NO production. Prior to running the above experiment, an acute toxicity assay was conducted in order to determine the appropriate concentration of oligosaccharides to be used. The oligosaccharides tested consisted of oligosaccharides which were extracted from palm kernel cake with a degree of polymerization (DP) equal to or less than six (OligoPKC), commercial mannanoligosaccharide (MOS) and commercial fructooligosaccharide (FOS). Acute toxicity test results revealed that the OligoPKC has a LC50 of 488.1 μg/ml while both MOS and FOS were non-toxic up to 1,000 μg/ml. Results of the in vivo NO measurements revealed that all three NDOs were capable of significantly reducing NO levels in LPS stimulated zebrafish embryos. In summary, at 250 μg/ml, OligoPKC was comparable to MOS and better than FOS at lowering NO in LPS induced zebrafish larvae. However, at higher doses, OligoPKC appears toxic to zebrafish larvae. This implies that the therapeutic potential of OligoPKC is limited by its toxicity.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links