Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Yeap S, Akhtar MN, Lim KL, Abu N, Ho WY, Zareen S, et al.
    Drug Des Devel Ther, 2015;9:983-92.
    PMID: 25733816 DOI: 10.2147/DDDT.S65468
    Anthraquinones are an important class of naturally occurring biologically active compounds. In this study, anthraquinone derivative 1,3-dihydroxy-9,10-anthraquinone-2- carboxylic acid (DHAQC) (2) was synthesized with 32% yield through the Friedel-Crafts condensation reaction. The mechanisms of cytotoxicity of DHAQC (2) in human breast cancer MCF-7 cells were further investigated. Results from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that DHAQC (2) exhibited potential cytotoxicity and selectivity in the MCF-7 cell line, comparable with the naturally occurring anthraquinone damnacanthal. DHAQC (2) showed a slightly higher IC50 (inhibitory concentration with 50% cell viability) value in the MCF-7 cell line compared to damnacanthal, but it is more selective in terms of the ratio of IC50 on MCF-7 cells and normal MCF-10A cells. (selective index for DHAQC (2) was 2.3 and 1.7 for damnacanthal). The flow cytometry cell cycle analysis on the MCF-7 cell line treated with the IC50 dose of DHAQC (2) for 48 hours showed that DHAQC (2) arrested MCF-7 cell line at the G2/M phase in association with an inhibited expression of PLK1 genes. Western blot analysis also indicated that the DHAQC (2) increased BAX, p53, and cytochrome c levels in MCF-7 cells, which subsequently activated apoptosis as observed in annexin V/propidium iodide and cell cycle analyses. These results indicate that DHAQC (2) is a synthetic, cytotoxic, and selective anthraquinone, which is less toxic than the natural product damnacanthal, and which demonstrates potential in the induction of apoptosis in the breast cancer MCF-7 cell line.
  2. Voon K, Johari NA, Lim KL, Wong ST, Khaw LT, Wong SF, et al.
    Bio Protoc, 2021 May 05;11(9):e4005.
    PMID: 34124305 DOI: 10.21769/BioProtoc.4005
    The COVID-19 pandemic requires mass screening to identify those infected for isolation and quarantine. Individually screening large populations for the novel pathogen, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is costly and requires a lot of resources. Sample pooling methods improve the efficiency of mass screening and consume less reagents by increasing the capacity of testing and reducing the number of experiments performed, and are therefore especially suitable for under-developed countries with limited resources. Here, we propose a simple, reliable pooling strategy for COVID-19 testing using clinical nasopharyngeal (NP) and/or oropharyngeal (OP) swabs. The strategy includes the pooling of 10 NP/OP swabs for extraction and subsequent testing via quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR), and may also be applied to the screening of other pathogens.
  3. Tay TKY, Lim KL, Hilmy MH, Thike AA, Goh ST, Song LH, et al.
    Malays J Pathol, 2017 Dec;39(3):257-265.
    PMID: 29279588
    INTRODUCTION: Human papillomavirus (HPV) testing is used as a means of triaging cervico-vaginal smears with low grade squamous abnormalities or as part of co-testing with cytology. While HPV testing has a high sensitivity, it has a low specificity in detecting cervical intraepithelial neoplasia grade 2 and above (CIN 2+) leading to unnecessary colposcopy referrals. We investigate the accuracy of the p16/Ki-67 dual immunocytochemical stain in determining the presence of CIN 2+ lesions on histology and its potential as a superior biomarker for triage.

    METHODS: Liquid based cervico-vaginal cytology specimens with squamous abnormalities and corresponding histology from 97 women with subsequent colposcopy and biopsy were included. The specimens were then subjected to the dual stain and Roche Cobas 4800 multiplex real time PCR HPV DNA testing. The sensitivity and specificity of the dual stain and HPV testing were calculated using CIN 2+ on histology as a reference standard.

    RESULTS: The sensitivity and specificity of the dual stain in detecting histology proven CIN 2+ was 93.7% and 76.5% while HPV testing was 85.7% and 14.7% respectively. Of the 44 women with ASCUS or LSIL on cytology, the dual stain also reduced the number of unnecessary colposcopy referrals from 27 to 7 when used as a triage marker compared to HPV testing.

    CONCLUSION: p16/Ki-67 dual stain was more sensitive and specific than HPV testing in determining the presence of CIN 2+ on histology. It could triage low grade cervico-vaginal specimens more effectively and potentially help women avoid unnecessary colposcopies. Future studies are needed to further evaluate its role in cervical cancer screening programmes.

  4. Shao YM, Ma X, Paira P, Tan A, Herr DR, Lim KL, et al.
    PLoS One, 2018;13(1):e0188212.
    PMID: 29304113 DOI: 10.1371/journal.pone.0188212
    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra of the human brain, leading to depletion of dopamine production. Dopamine replacement therapy remains the mainstay for attenuation of PD symptoms. Nonetheless, the potential benefit of current pharmacotherapies is mostly limited by adverse side effects, such as drug-induced dyskinesia, motor fluctuations and psychosis. Non-dopaminergic receptors, such as human A2A adenosine receptors, have emerged as important therapeutic targets in potentiating therapeutic effects and reducing the unwanted side effects. In this study, new chemical entities targeting both human A2A adenosine receptor and dopamine D2 receptor were designed and evaluated. Two computational methods, namely support vector machine (SVM) models and Tanimoto similarity-based clustering analysis, were integrated for the identification of compounds containing indole-piperazine-pyrimidine (IPP) scaffold. Subsequent synthesis and testing resulted in compounds 5 and 6, which acted as human A2A adenosine receptor binders in the radioligand competition assay (Ki = 8.7-11.2 μM) as well as human dopamine D2 receptor binders in the artificial cell membrane assay (EC50 = 22.5-40.2 μM). Moreover, compound 5 showed improvement in movement and mitigation of the loss of dopaminergic neurons in Drosophila models of PD. Furthermore, in vitro toxicity studies on compounds 5 and 6 did not reveal any mutagenicity (up to 100 μM), hepatotoxicity (up to 30 μM) or cardiotoxicity (up to 30 μM).
  5. Rusdan NA, Timmiati SN, Isahak WNRW, Yaakob Z, Lim KL, Khaidar D
    Nanomaterials (Basel), 2022 Nov 02;12(21).
    PMID: 36364653 DOI: 10.3390/nano12213877
    Carbon-intensive industries must deem carbon capture, utilization, and storage initiatives to mitigate rising CO2 concentration by 2050. A 45% national reduction in CO2 emissions has been projected by government to realize net zero carbon in 2030. CO2 utilization is the prominent solution to curb not only CO2 but other greenhouse gases, such as methane, on a large scale. For decades, thermocatalytic CO2 conversions into clean fuels and specialty chemicals through catalytic CO2 hydrogenation and CO2 reforming using green hydrogen and pure methane sources have been under scrutiny. However, these processes are still immature for industrial applications because of their thermodynamic and kinetic limitations caused by rapid catalyst deactivation due to fouling, sintering, and poisoning under harsh conditions. Therefore, a key research focus on thermocatalytic CO2 conversion is to develop high-performance and selective catalysts even at low temperatures while suppressing side reactions. Conventional catalysts suffer from a lack of precise structural control, which is detrimental toward selectivity, activity, and stability. Core-shell is a recently emerged nanomaterial that offers confinement effect to preserve multiple functionalities from sintering in CO2 conversions. Substantial progress has been achieved to implement core-shell in direct or indirect thermocatalytic CO2 reactions, such as methanation, methanol synthesis, Fischer-Tropsch synthesis, and dry reforming methane. However, cost-effective and simple synthesis methods and feasible mechanisms on core-shell catalysts remain to be developed. This review provides insights into recent works on core-shell catalysts for thermocatalytic CO2 conversion into syngas and fuels.
  6. Mohamad NE, Yeap SK, Lim KL, Yusof HM, Beh BK, Tan SW, et al.
    Chin Med, 2015;10:3.
    PMID: 25699088 DOI: 10.1186/s13020-015-0030-4
    Pineapple (Ananas comosus) was demonstrated to be hepatoprotective. This study aims to investigate the reversing effects of pineapple vinegar on paracetamol-induced liver damage in murine model.
  7. Mohamad NE, Abu N, Yeap SK, Lim KL, Romli MF, Sharifuddin SA, et al.
    Nutr Metab (Lond), 2019;16:49.
    PMID: 31372176 DOI: 10.1186/s12986-019-0380-5
    Background: Plant-based food medicine and functional foods have been consumed extensively due to their bioactive substances and health-beneficial effects. Vinegar is one of them due to its bioactivities, which confers benefits on human body. Our previous study has produced pineapple vinegar that is rich in gallic acid and caffeic acid via 2 steps fermentation. There are many evidences that show the effectiveness of these resources in inhibiting the proliferation and metastasis of the cancer cells through several mechanisms.

    Methods: Freeze-dried pineapple vinegar was evaluated for its in vitro apoptosis and metastasis inhibitory potential using MTT, cell cycle, Annexin V and scratch assays. The in vivo test using BALB/c mice challenged with 4 T1 cells was further investigated by pre-treating the mice with 0.08 or 2 ml/kg body weight of freshly-prepared pineapple vinegar for 28 days. The tumor weight, apoptotic state of cells in tumor, metastasis and immune response of the untreated and pineapple vinegar treatment group were evaluated and compared.

    Results: From the in vitro study, an IC50 value of 0.25 mg/mL after 48 h of treatment was established. Annexin V/PI and scratch closure assays showed that pineapple vinegar induced 70% of cell population to undergo apoptosis and inhibited 30% of wound closure of 4 T1 cells. High concentration of pineapple vinegar (2 ml/kg body weight) led to the reduction of tumor weight and volume by 45%as compared to the untreated 4 T1-challenged mice. This effect might have been contributed by the increase of T cell and NK cells population associated with the overexpression of IL-2 andIFN-γ cytokines and splenocyte cytotoxicity. Furthermore, fewer instances of metastasis events were recorded in the pineapple vinegar treatment group and this could be explained by the downregulation of inflammation related genes (iNOS, NF-kB and COX2), metastasis related genes (iCAM, VEGF and MMP9) and angeogenesis related genes (CD26, TIMP1, HGF, MMP3, IGFBP-1 and IGFBP-2).

    Conclusion: The ability of pineapple vinegar to delay cancer progression portrayed its potential as chemopreventive dietry intervention for cancer therapy.

  8. Mohamad NE, Yeap SK, Beh BK, Ky H, Lim KL, Ho WY, et al.
    BMC Complement Altern Med, 2018 Jun 25;18(1):195.
    PMID: 29940935 DOI: 10.1186/s12906-018-2199-4
    BACKGROUND: Coconut water has been commonly consumed as a beverage for its multiple health benefits while vinegar has been used as common seasoning and a traditional Chinese medicine. The present study investigates the potential of coconut water vinegar in promoting recovery on acetaminophen induced liver damage.

    METHODS: Mice were injected with 250 mg/kg body weight acetaminophen for 7 days and were treated with distilled water (untreated), Silybin (positive control) and coconut water vinegar (0.08 mL/kg and 2 mL/kg body weight). Level of oxidation stress and inflammation among treated and untreated mice were compared.

    RESULTS: Untreated mice oral administrated with acetaminophen were observed with elevation of serum liver profiles, liver histological changes, high level of cytochrome P450 2E1, reduced level of liver antioxidant and increased level of inflammatory related markers indicating liver damage. On the other hand, acetaminophen challenged mice treated with 14 days of coconut water vinegar were recorded with reduction of serum liver profiles, improved liver histology, restored liver antioxidant, reduction of liver inflammation and decreased level of liver cytochrome P450 2E1 in dosage dependent level.

    CONCLUSION: Coconut water vinegar has helped to attenuate acetaminophen-induced liver damage by restoring antioxidant activity and suppression of inflammation.

  9. Mohamad NE, Yeap SK, Abu N, Lim KL, Zamberi NR, Nordin N, et al.
    Food Nutr Res, 2019;63.
    PMID: 30814922 DOI: 10.29219/fnr.v63.1616
    Background: Coconut water and vinegars have been reported to possess potential anti-tumour and immunostimulatory effects. However, the anti-tumour, anti-inflammatory and immunostimulatory effects of coconut water vinegar have yet to be tested.

    Objective: This study investigated the in vitro and in vivo anti-tumour effects of coconut water vinegar on 4T1 breast cancer cells.

    Methods: The 4T1 cells were treated with freeze-dried coconut water vinegar and subjected to MTT cell viability, BrdU, annexin V/PI apoptosis, cell cycle and wound healing assays for the in vitro analysis. For the in vivo chemopreventive evaluation, mice challenged with 4T1 cells were treated with 0.08or 2.00 mL/kg body weight of fresh coconut water vinegar for 28 days. Tumour weight, apoptosis of tumour cells, metastasis and immunity of untreated mice and coconut water vinegar-treated 4T1 challenged mice were compared.

    Results: Freeze-dried coconut water vinegar reduced the cell viability, induced apoptosis and delayed the wound healing effect of 4T1 cells in vitro. In vivo, coconut water vinegar delayed 4T1 breast cancer progression in mice by inducing apoptosis and delaying the metastasis. Furthermore, coconut water vinegar also promoted immune cell cytotoxicity and production of anticancer cytokines. The results indicate that coconut water vinegar delays breast cancer progression by inducing apoptosis in breast cancer cells, suppressing metastasis and activating anti-tumour immunity.

    Conclusion: Coconut water vinegar is a potential health food ingredient with a chemopreventive effect.

  10. Lim KL, Jazayeri SD, Yeap SK, Alitheen NB, Bejo MH, Ideris A, et al.
    BMC Vet Res, 2012;8:132.
    PMID: 22866758 DOI: 10.1186/1746-6148-8-132
    DNA vaccines offer several advantages over conventional vaccines in the development of effective vaccines against avian influenza virus (AIV). However, one of the limitations of the DNA vaccine in poultry is that it induces poor immune responses. In this study, chicken interleukin (IL) -15 and IL-18 were used as genetic adjuvants to improve the immune responses induced from the H5 DNA vaccination in chickens. The immunogenicity of the recombinant plasmid DNA was analyzed based on the antibody production, T cell responses and cytokine production, following inoculation in 1-day-old (Trial 1) and 14-day-old (Trial 2) specific-pathogen-free chickens. Hence, the purpose of the present study was to explore the role of chicken IL-15 and IL-18 as adjuvants following the vaccination of chickens with the H5 DNA vaccine.
  11. Lim KL, Fam HB
    J Cataract Refract Surg, 2009 Dec;35(12):2144-8.
    PMID: 19969221 DOI: 10.1016/j.jcrs.2009.06.031
    PURPOSE: To determine the distribution of higher-order corneal and ocular aberrations in a healthy refractive surgery population.
    SETTING: Island Hospital, Penang, Malaysia.
    METHODS: In this prospective observational study, 1 eye of ethnic Chinese refractive surgery patients was evaluated with an Orbscan II corneal topographer and a Zywave Hartmann-Shack aberrometer with a 6.0 mm pupil. Height data were analyzed to derive the higher-order aberrations (HOAs) from the 3rd to 5th Zernike order.
    RESULTS: The mean spherical equivalent in the 70 eyes evaluated was -6.46 diopters +/- 3.10 (SD). The mean total corneal HOA was 0.574 +/- 0.218 microm (range 0.269 to 1.249 microm) and the mean total ocular HOA, 0.525 +/- 0.354 microm (range 0.138 to 2.145 microm). There was no statistically significant correlation with age. The mean 3rd-order ocular aberration was 0.399 +/- 0.287 microm; the mean 4th-order, 0.297 +/- 0.223 microm; and the mean 5th-order, 0.108 +/- 0.101 microm. Corneal spherical aberration was greater than ocular spherical aberration (mean 0.312 +/- 0.114 microm versus 0.200 +/- 0.170 microm). Multilinear regression showed that the only dependent that predicted ocular spherical aberration was anterior corneal asphericity (r(2) = 0.227, F = 17.95, P
  12. Lim KL, Fam HB
    J Cataract Refract Surg, 2006 Nov;32(11):1814-9.
    PMID: 17081863
    To determine the values for the anterior best-fit sphere (BFS) and posterior BFS in an Asian population using the Orbscan II (Bausch & Lomb) slit-scanning Placido disk corneal topographer.
  13. Lim KL, Teoh HK, Choong PF, Teh HX, Cheong SK, Kamarul T
    Expert Opin Biol Ther, 2016 07;16(7):941-51.
    PMID: 27070264 DOI: 10.1517/14712598.2016.1174211
    INTRODUCTION: Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model.

    AREAS COVERED: Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents.

    EXPERT OPINION: Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

  14. Lim KL, Johari NA, Wong ST, Khaw LT, Tan BK, Chan KK, et al.
    PLoS One, 2020;15(8):e0238417.
    PMID: 32857823 DOI: 10.1371/journal.pone.0238417
    The rapid global spread of the coronavirus disease (COVID-19) has inflicted significant health and socioeconomic burden on affected countries. As positive cases continued to rise in Malaysia, public health laboratories experienced an overwhelming demand for COVID-19 screening. The confirmation of positive cases of COVID-19 has solely been based on the detection of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) using real-time reverse transcription polymerase chain reaction (qRT-PCR). In efforts to increase the cost-effectiveness and efficiency of COVID-19 screening, we evaluated the feasibility of pooling clinical Nasopharyngeal/Oropharyngeal (NP/OP) swab specimens during nucleic acid extraction without a reduction in sensitivity of qRT-PCR. Pools of 10 specimens were extracted and subsequently tested by qRT-PCR according to the WHO-Charité protocol. We demonstrated that the sample pooling method showed no loss of sensitivity. The effectiveness of the pooled testing strategy was evaluated on both retrospective and prospective samples, and the results showed a similar detection sensitivity compared to testing individual sample alone. This study demonstrates the feasibility of using a pooled testing strategy to increase testing capacity and conserve resources, especially when there is a high demand for disease testing.
  15. Lim KL, Fam HB
    J Refract Surg, 2006 Apr;22(4):406-8.
    PMID: 16629076
    PURPOSE: To evaluate a novel non-surgical method for improving vision in a refractive surgery patient.

    METHODS: A 45-year-old man who had undergone LASIK 5 years previously presented with blurred distance vision. Unaided vision in the right eye was 20/329-2) and 20/20 in the left eye. He enrolled for NeuroVision treatment (NeuroVision Pte Ltd, Singapore), a computer-based interface in which a repetitive set of visual excerises is performed for 10 to 12 weeks.

    RESULTS: After 35 sessions, unaided visual acuity in the right eye was 20/16(-3) and 20/20(-1) in the left eye, representing 2.8 lines of improvement in the right eye and 1.6 lines in the left eye.

    CONCLUSIONS: NeuroVision, a noninvasive treatment based on the concept of perceptual learning, is a benefit in cases in which surgical enhancement is not recommended.

  16. Lim KL, Jazayeri SD, Yeap SK, Mohamed Alitheen NB, Bejo MH, Ideris A, et al.
    Res Vet Sci, 2013 Dec;95(3):1224-34.
    PMID: 23948357 DOI: 10.1016/j.rvsc.2013.07.013
    We had examined the immunogenicity of a series of plasmid DNAs which include neuraminidase (NA) and nucleoprotein (NP) genes from avian influenza virus (AIV). The interleukin-15 (IL-15) and interleukin-18 (IL-18) as genetic adjuvants were used for immunization in combination with the N1 and NP AIV genes. In the first trial, 8 groups of chickens were established with 10 specific-pathogen-free (SPF) chickens per group while, in the second trial 7 SPF chickens per group were used. The overall N1 enzyme-linked immunosorbent assay (ELISA) titer in chickens immunized with the pDis/N1+pDis/IL-15 was higher compared to the chickens immunized with the pDis/N1 and this suggesting that chicken IL-15 could play a role in enhancing the humoral immune response. Besides that, the chickens that were immunized at 14-day-old (Trial 2) showed a higher N1 antibody titer compared to the chickens that were immunized at 1-day-old (Trial 1). Despite the delayed in NP antibody responses, the chickens co-administrated with IL-15 were able to induce earlier and higher antibody response compared to the pDis/NP and pDis/NP+pDis/IL-18 inoculated groups. The pDis/N1+pDis/IL-15 inoculated chickens also induced higher CD8+ T cells increase than the pDis/N1 group in both trials (P<0.05). The flow cytometry results from both trials demonstrated that the pDis/N1+pDis/IL-18 groups were able to induce CD4+ T cells higher than the pDis/N1 group (P<0.05). Meanwhile, pDis/N1+pDis/IL-18 group was able to induce CD8+ T cells higher than the pDis/N1 group (P<0.05) in Trial 2 only. In the present study, pDis/NP was not significant (P>0.05) in inducing CD4+ and CD8+ T cells when co-administered with the pDis/IL-18 in both trials in comparison to the pDis/NP. Our data suggest that the pDis/N1+pDis/IL-15 combination has the potential to be used as a DNA vaccine against AIV in chickens.
  17. Lim KL, Amir A, Lau YL, Fong MY
    Malar J, 2017 08 11;16(1):331.
    PMID: 28800732 DOI: 10.1186/s12936-017-1984-8
    BACKGROUND: The zoonotic Plasmodium knowlesi is a major cause of human malaria in Malaysia. This parasite uses the Duffy binding protein (PkDBPαII) to interact with the Duffy antigen receptor for chemokines (DARC) receptor on human and macaque erythrocytes to initiate invasion. Previous studies on P. knowlesi have reported distinct Peninsular Malaysia and Malaysian Borneo PkDBPαII haplotypes. In the present study, the differential binding activity of these haplotypes with human and macaque (Macaca fascicularis) erythrocytes was investigated.

    METHODS: The PkDBPαII of Peninsular Malaysia and Malaysian Borneo were expressed on the surface of COS-7 cells and tested with human and monkey erythrocytes, with and without anti-Fy6 (anti-Duffy) monoclonal antibody treatment. Binding activity level was determined by counting the number of rosettes formed between the transfected COS-7 cells and the erythrocytes.

    RESULTS: Anti-Fy6 treatment was shown to completely block the binding of human erythrocytes with the transfected COS-7 cells, thus verifying the specific binding of human DARC with PkDBPαII. Interestingly, the PkDBPαII of Peninsular Malaysia displayed a higher binding activity with human erythrocytes when compared with the Malaysian Borneo PkDBPαII haplotype (mean number of rosettes formed = 156.89 ± 6.62 and 46.00 ± 3.57, respectively; P 

  18. Lim KL, Wong CY, Wong WY, Loh KS, Selambakkannu S, Othman NAF, et al.
    Membranes (Basel), 2021 May 27;11(6).
    PMID: 34072048 DOI: 10.3390/membranes11060397
    This review discusses the roles of anion exchange membrane (AEM) as a solid-state electrolyte in fuel cell and electrolyzer applications. It highlights the advancement of existing fabrication methods and emphasizes the importance of radiation grafting methods in improving the properties of AEM. The development of AEM has been focused on the improvement of its physicochemical properties, including ionic conductivity, ion exchange capacity, water uptake, swelling ratio, etc., and its thermo-mechano-chemical stability in high-pH and high-temperature conditions. Generally, the AEM radiation grafting processes are considered green synthesis because they are usually performed at room temperature and practically eliminated the use of catalysts and toxic solvents, yet the final products are homogeneous and high quality. The radiation grafting technique is capable of modifying the hydrophilic and hydrophobic domains to control the ionic properties of membrane as well as its water uptake and swelling ratio without scarifying its mechanical properties. Researchers also showed that the chemical stability of AEMs can be improved by grafting spacers onto base polymers. The effects of irradiation dose and dose rate on the performance of AEM were discussed. The long-term stability of membrane in alkaline solutions remains the main challenge to commercial use.
  19. Lim KL, Tay A, Nadarajah VD, Mitra NK
    J Occup Med Toxicol, 2011 Mar 08;6(1):4.
    PMID: 21385392 DOI: 10.1186/1745-6673-6-4
    BACKGROUND: Chlorpyrifos (CPF), a commonly used pesticide worldwide, has been reported to produce neurobehavioural changes. Dermal exposure to CPF is common in industries and agriculture. This study estimates changes in glial fibrillary acidic protein (GFAP) expression in hippocampal regions and correlates with histomorphometry of neurons and serum cholinesterase levels following dermal exposure to low doses of CPF with or without swim stress.

    METHODS: Male albino mice were separated into control, stress control and four treatment groups (n = 6). CPF was applied dermally over the tails under occlusive bandage (6 hours/day) at doses of 1/10th (CPF 0.1) and 1/5th dermal LD50 (CPF 0.2) for seven days. Consequent treatment of swim stress followed by CPF was also applied. Serum cholinesterase levels were estimated using spectroflurometric methods. Paraffin sections of the left hippocampal regions were stained with 0.2% thionin followed by the counting of neuronal density. Right hippocampal sections were treated with Dako Envision GFAP antibodies.

    RESULTS: CPF application in 1/10th LD50 did not produce significant changes in serum cholinesterase levels and neuronal density, but increased GFAP expression significantly (p < 0.001). Swim stress with CPF 0.1 group did not show increase in astrocytic density compared to CPF 0.1 alone but decreased neuronal density.

    CONCLUSIONS: Findings suggest GFAP expression is upregulated with dermal exposure to low dose of CPF. Stress combined with sub-toxic dermal CPF exposure can produce neurotoxicity.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links