Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Zhou Y, Cheng J, Wu C, Teo KL
    PMID: 36855682 DOI: 10.1007/s40747-023-00976-x
    The problem of blood transshipment and allocation in the context of the COVID-19 epidemic has many new characteristics, such as two-stage, trans-regional, and multi-modal transportation. Considering these new characteristics, we propose a novel multi-objective optimization model for the two-stage emergent blood transshipment-allocation. The objectives considered are to optimize the quality of transshipped blood, the satisfaction of blood demand, and the overall cost including shortage penalty. An improved integer encoded hybrid multi-objective whale optimization algorithm (MOWOA) with greedy rules is then designed to solve the model. Numerical experiments demonstrate that our two-stage model is superior to one-stage optimization methods on all objectives. The degree of improvement ranges from 0.69 to 66.26%.
  2. Zhou J, Wu C, Yeh PJ, Ju J, Zhong L, Wang S, et al.
    Sci Total Environ, 2023 Sep 01;889:164274.
    PMID: 37209749 DOI: 10.1016/j.scitotenv.2023.164274
    The successive flood-heat extreme (SFHE) event, which threatens the securities of human health, economy, and building environment, has attracted extensive research attention recently. However, the potential changes in SFHE characteristics and the global population exposure to SFHE under anthropogenic warming remain unclear. Here, we present a global-scale evaluation of the projected changes and uncertainties in SFHE characteristics (frequency, intensity, duration, land exposure) and population exposure under the Representative Concentration Pathway (RCP) 2.6 and 6.0 scenarios, based on the multi-model ensembles (five global water models forced by four global climate models) within the Inter-Sectoral Impact Model Intercomparison Project 2b framework. The results reveal that, relative to the 1970-1999 baseline period, the SFHE frequency is projected to increase nearly globally by the end of this century, especially in the Qinghai-Tibet Plateau (>20 events/30-year) and the tropical regions (e.g., northern South America, central Africa, and southeastern Asia, >15 events/30-year). The projected higher SFHE frequency is generally accompanied by a larger model uncertainty. By the end of this century, the SFHE land exposure is expected to increase by 12 % (20 %) under RCP2.6 (RCP6.0), and the intervals between flood and heatwave in SFHE tend to decrease by up to 3 days under both RCPs, implying the more intermittent SFHE occurrence under future warming. The SFHE events will lead to the higher population exposure in the Indian Peninsula and central Africa (<10 million person-days) and eastern Asia (<5 million person-days) due to the higher population density and the longer SFHE duration. Partial correlation analysis indicates that the contribution of flood to the SFHE frequency is greater than that of heatwave for most global regions, but the SFHE frequency is dominated by the heatwave in northern North America and northern Asia.
  3. Zhao J, Ma H, Wu W, Ali Bacar M, Wang Q, Gao M, et al.
    Bioresour Technol, 2023 Jan;368:128375.
    PMID: 36414142 DOI: 10.1016/j.biortech.2022.128375
    Substrate toxicity would limit the upgrading of waste biomass to medium-chain fatty acids (MCFAs). In this work, two fermentation modes of electro-fermentation (EF) and traditional fermentation (TF) with different concentration of liquor fermentation waste (20%, 40%, 60%) were used for MCFAs production as well as mechanism investigation. The highest caproate (4.04 g/L) and butyrate (13.96 g/L) concentrations were obtained by EF at 40% substrate concentration. TF experiments showed that the substrate concentration above 40% severely inhibited ethanol oxidation and products formation. Compared with TF mode, the total substrates consumption and product yields under EF mode were significantly increased by 2.6%-43.5% and 54.0%-83.0%, respectively. Microbial analysis indicated that EF effectively alleviated substrate toxicity and enriched chain elongation bacteria, particularly Clostridium_sensu_stricto 12, thereby promoting ethanol oxidation and products formation. Caproiciproducens tolerated high-concentration substrates to ensure normal lactate metabolism. This study provides a new way to produce MCFAs from high concentration wastewater.
  4. Zhang Y, Jiang K, Chen S, Wang L, Zhang X, Xu W, et al.
    Front Plant Sci, 2023;14:1234729.
    PMID: 37885663 DOI: 10.3389/fpls.2023.1234729
    RATIONALE: Ganoderma lucidum (G. lucidum) is a popular medicinal fungus that has been used in traditional medicine for decades, with its provenance influencing its medicinal and commercial worth. The amount of active ingredients and the price of G. lucidum from different origins vary significantly; hence, fraudulent labeling is common. Reliable techniques for G. lucidum geographic verification are urgently required to safeguard the interests of consumers, producers, and honest dealers. A stable isotope is widely acknowledged as a useful traceability technique and could be developed to confirm the geographical origin of G. lucidum.

    METHODS: G. lucidum samples from various sources and in varying stages were identified by using δ 13C, δD, δ 18O, δ 15N, C, and N contents combined with chemometric tools. Chemometric approaches, including PCA, OPLS-DA, PLS, and FLDA models, were applied to the obtained data. The established models were used to trace the origin of G. lucidum from various sources or track various stages of G. lucidum.

    RESULTS: In the stage model, the δ 13C, δD, δ 18O, δ 15N, C, and N contents were considered meaningful variables to identify various stages of G. lucidum (bud development, growth, and maturing) using PCA and OPLS-DA and the findings were validated by the PLS model rather than by only four variables (δ 13C, δD, δ 18O, and δ 15N). In the origin model, only four variables, namely δ 13C, δD, δ 18O, and δ 15N, were used. PCA divided G. lucidum samples into four clusters: A (Zhejiang), B (Anhui), C (Jilin), and D (Fujian). The OPLS-DA model could be used to classify the origin of G. lucidum. The model was validated by other test samples (Pseudostellaria heterophylla), and the external test (G. lucidum) by PLS and FLDA models demonstrated external verification accuracy of up to 100%.

    CONCLUSION: C, H, O, and N stable isotopes and C and N contents combined with chemometric techniques demonstrated considerable potential in the geographic authentication of G. lucidum, providing a promising method to identify stages of G. lucidum.

  5. Zhang H, Liao W, Chao W, Chen Q, Zeng H, Wu C, et al.
    J Dermatol, 2008 Sep;35(9):555-61.
    PMID: 18837699 DOI: 10.1111/j.1346-8138.2008.00523.x
    Sebaceous gland diseases are a group of common dermatological diseases with multiple causes. To date, a systematic report of the risk factors for sebaceous gland diseases in adolescents has not been published. The aim of this study was to assess the prevalence and risk factors for certain sebaceous gland diseases (seborrhea, seborrheic dermatitis, acne, androgenetic alopecia and rosacea) and their relationship to gastrointestinal dysfunction in adolescents. From August-October, 2002-2005, a questionnaire survey was carried out to obtain epidemiological data about sebaceous gland diseases. Using random cluster sampling, 13 215 Han adolescents aged 12-20 years were recruited from four countries or districts (Macau; Guangzhou, China; Malaysia; and Indonesia). The statistical software SPSS ver. 13.0 was used to analyze the data. The prevalence of seborrhea, seborrheic dermatitis, acne, androgenetic alopecia and rosacea was 28.27%, 10.17%, 51.03%, 1.65% and 0.97%, respectively. Based on multivariate logistic regression analysis, the risk factors for sebaceous gland diseases included: age; duration of local residency; halitosis; gastric reflux; abdominal bloating; constipation; sweet food; spicy food; family history of acne; late night sleeping on a daily basis; excessive axillary, body and facial hair; excessive periareolar hair; and anxiety. There was a statistically significant difference in the prevalence of gastrointestinal symptoms (halitosis; gastric reflux; abdominal bloating; constipation) between patients with and without sebaceous gland diseases (chi(2) = 150.743; P = 0.000). Gastrointestinal dysfunction is an important risk factor for diseases of the sebaceous glands and is correlated with their occurrence and development.
  6. Xu X, Yi C, Feng T, Ge Y, Liu M, Wu C, et al.
    Clin Immunol, 2023 Aug;253:109685.
    PMID: 37406980 DOI: 10.1016/j.clim.2023.109685
    Inducing tumor-specific T cell responses and regulating suppressive tumor microenvironments have been a challenge for effective tumor therapy. CpG (ODN), the Toll-like receptor 9 agonist, has been widely used as adjuvants of cancer vaccines to induce T cell responses. We developed a novel adjuvant to improve the targeting of lymph nodes. CpG were modified with lipid and glycopolymers by the combination of photo-induced RAFT polymerization and click chemistry, and the novel adjuvant was termed as lipid-glycoadjuvant@AuNPs (LCpG). OVA protein was used as model antigen and melanoma model was established to test the immunotherapy effect of the adjuvant. In tumor model, the antitumor effect and mechanism of LCpG on the response of CTLs were examined by flow cytometry and cell cytotoxicity assay. The effects of LCpG on macrophage polarization and Tregs differentiation in tumor microenvironment were also studied by cell depletion assay and cytokine neutralization assay. We also tested the therapeutic effect of the combination of the adjuvant and anti-PD-1 treatment. LCpG could be rapidly transported to and retained longer in the lymphoid nodes than unmodified CpG. In melanoma model, LCpG controlled both primary tumor and its metastasis, and established long-term memory. In spleen and tumor draining lymphoid nodes, LCpG activated tumor-specific Tc1 responses, with increased CD8+ T-cell proliferation, antigen-specific Tc1 cytokine production and specific-tumor killing capacity. In tumor microenvironments, antigen-specific Tc1 induced by the LCpG promoted CTL infiltration, skewed tumor associated macrophages to M1 phenotype, regulated Treg and induced proinflammatory cytokines production in a CTL-derived IFN-γ-dependent manner. In vivo cell depletion and adoptive transfer experiments confirmed that antitumor activity of LCpG included vaccine was mainly dependent on CTL-derived IFN-γ. The anti-tumor efficacy of LCpG was dramatically enhanced when combined with anti-PD1 immunotherapy. LCpG was a promising adjuvant for vaccine formulation which could augment tumor-specific Tc1 activity, and regulate tumor microenvironments.
  7. Xiong X, Wong NH, Ernawati L, Sunarso J, Zhang X, Jin Y, et al.
    J Colloid Interface Sci, 2023 Aug 15;644:533-545.
    PMID: 37012113 DOI: 10.1016/j.jcis.2023.03.180
    Metal-organic polymers (MOPs) can enhance the photoelectrochemical (PEC) water oxidation performance of BiVO4 photoanodes, but their PEC mechanisms have yet to be comprehended. In this work, we constructed an active and stable composite photoelectrode by overlaying a uniform MOP on the BiVO4 surface using Fe2+ as the metal ions and 2,5-dihydroxyterephthalic acid (DHTA) as ligand. Such modification on the BiVO4 surface yielded a core-shell structure that could effectively enhance the PEC water oxidation activity of the BiVO4 photoanode. Our intensity-modulated photocurrent spectroscopy analysis revealed that the MOP overlayer could concurrently reduce the surface charge recombination rate constant (ksr) and enhance the charge transfer rate constant (ktr), thus accelerating water oxidation activity. These phenomena can be ascribed to the passivation of the surface that inhibits the recombination of the charge carrier and the MOP catalytic layer that improves the hole transfer. Our rate law analysis also demonstrated that the MOP coverage shifted the reaction order of the BiVO4 photoanode from the third-order to the first-order, resulting in a more favorable rate-determining step where only one hole accumulation is required to overcome water oxidation. This work provides new insights into the reaction mechanism of MOP-modified semiconductor photoanodes.
  8. Wu CL, Hsu WH, Chiang CD, Kao CH, Hung DZ, King SL, et al.
    J. Toxicol. Clin. Toxicol., 1997;35(3):241-8.
    PMID: 9140317 DOI: 10.3109/15563659709001207
    BACKGROUND: Taking Sauropus androgynus, a Malaysian food, to reduce weight began as a fad in Taiwan in 1994. Some advocates of this fad developed pulmonary dysfunction. The aim of this study is to report the lung injury in patients taking Sauropus androgynus.

    METHODS: From July 1995 to November 1995, we investigated 104 nonsmoking patients (one male and 103 females) with chest roentgenography, pulmonary function, test, and Technetium 99m-labeled diethylene triamine penta-acetate (Tc-99m DTPA) radioaerosol inhalation lung scintigraphy.

    RESULTS: Among the 90 patients receiving Tc-99m DTPA inhalation lung scan, 46 (51.1%) patients had increased clearance of Tc-99m DTPA from lung and 20 (22.2%) patients had inhomogeneous deposition of the submicronic radioaerosol. Eighteen (18/100) patients had obstructive ventilatory impairment in pulmonary function test. Analyzing the results, we found that the patients with respiratory symptoms (n = 42) took more vegetables (p = 0.016), had increased clearance of Tc-99m DTPA (p = 0.010) and had lower FEV1 (p = 0.001), FEV1/FVC (p < 0.001), FEF25-75 (p = 0.001), VC (p = 0.002) and DLCO (p = 0.009) than the patients without respiratory symptoms (n = 62). FEV1 and FEV1/FVC were significantly reduced in patients with severe impairment of alveolar permeability. The cumulative dosage and duration of exposure were significantly associated with the reduction of FEV1 and FEV1/FVC.

    CONCLUSION: The lung injury after taking Sauropus androgynus involves alveoli and/or small airways and is manifest as obstructive ventilatory impairment with inhomogeneous aerosol distribution and increased lung epithelial permeability.
  9. Wu C, Yang Z, Liu CX, Zong C
    Zootaxa, 2017 Dec 20;4365(5):585-589.
    PMID: 29686191 DOI: 10.11646/zootaxa.4365.5.5
    The genus Molpa Walker was previously considered to be disjunctly distributed in broad-leaf rain forests in India and Malaysia. Here we report one new species Molpa dulongensis sp. nov. from subtropic broad-leaf rain forests in southwestern Yunnan Province in China. This is a part of the Indo-Burma biodiversity hotspot area. So we can infer that Molpa is continuously distributed in broad-leaf rain forests found in Oriental Region. Redescription of the genus Molpa and description of the new species Molpa dulongensis sp. nov. are provided. The types are deposited in Insect Collection of Institute of Zoology, Chinese Academy of Sciences, Beijing, China (IZCAS).
  10. Wu C, Zhong L, Yeh PJ, Gong Z, Lv W, Chen B, et al.
    Sci Total Environ, 2024 Jan 01;906:167632.
    PMID: 37806579 DOI: 10.1016/j.scitotenv.2023.167632
    Drought affects vegetation growth to a large extent. Understanding the dynamic changes of vegetation during drought is of great significance for agricultural and ecological management and climate change adaptation. The relations between vegetation and drought have been widely investigated, but how vegetation loss and restoration in response to drought remains unclear. Using the standardized precipitation evapotranspiration index (SPEI) and the normalized difference vegetation index (NDVI) data, this study developed an evaluation framework for exploring the responses of vegetation loss and recovery to meteorological drought, and applied it to the humid subtropical Pearl River basin (PRB) in southern China for estimating the loss and recovery of three vegetation types (forest, grassland, cropland) during drought using the observed NDVI changes. Results indicate that vegetation is more sensitive to drought in high-elevation areas (lag time  8 months). Vegetation loss (especially in cropland) is found to be more sensitive to drought duration than drought severity and peak. No obvious linear relationship between drought intensity and the extent of vegetation loss is found. Regardless of the intensity, drought can cause the largest probability of mild loss of vegetation, followed by moderate loss, and the least probability of severe loss. Large spatial variability in the probability of vegetation loss and recovery time is found over the study domain, with a higher probability (up to 50 %) of drought-induced vegetation loss and a longer recovery time (>7 months) mostly in the high-elevation areas. Further analysis suggests that forest shows higher but cropland shows lower drought resistance than other vegetation types, and grassland requires a shorter recovery time (4.2-month) after loss than forest (5.1-month) and cropland (4.8-month).
  11. Wang Y, Zheng Z, Zhang C, Wu C, Tan CP, Liu Y
    Food Res Int, 2024 Feb;177:113852.
    PMID: 38225129 DOI: 10.1016/j.foodres.2023.113852
    Extruded plant proteins, also known as textured vegetable proteins (TVPs), serve as vital components in plant-based meat analogue, yet their structural and nutritional characteristics remain elusive. In this study, we examined the impact of high-moisture (HM) and low-moisture (LM) extrusion on the structures, digestion and absorption of three types of plant proteins. Extrusion transformed plant proteins from spherical to fibrous forms, and formed larger aggregate particles. It also led to the disruption of original disulfide bonds and hydrophobic interactions within protein molecules, and the formation of new cross-links. Intriguingly, compared to native plant proteins, TVPs' α-helix/β-sheet values decreased from 0.68 to 0.69 to 0.56-0.65. Extrusion increased the proportion of peptides shorter than 1 kD in digesta of TVPs by 1.44-23.63%. In comparison to unextruded plant proteins, TVPs exhibited lower content of free amino acids in cell transport products. Our findings demonstrated that extrusion can modify protein secondary structure by diminishing the α-helix/β-sheet value, and impact protein tertiary structure by reducing disulfide bonds and hydrophobic interactions, promoting the digestion and absorption of plant proteins. These insights offer valuable scientific backing for the utilization of extruded plant-based proteins, bolstering their role in enhancing the palatability and nutritional profile of plant-based meat substitutes.
  12. Qiu J, Li J, Li W, Wang K, Xiao T, Su H, et al.
    ACS Appl Mater Interfaces, 2024 Feb 28;16(8):10361-10371.
    PMID: 38362885 DOI: 10.1021/acsami.3c17438
    The human brain possesses a remarkable ability to memorize information with the assistance of a specific external environment. Therefore, mimicking the human brain's environment-enhanced learning abilities in artificial electronic devices is essential but remains a considerable challenge. Here, a network of Ag nanowires with a moisture-enhanced learning ability, which can mimic long-term potentiation (LTP) synaptic plasticity at an ultralow operating voltage as low as 0.01 V, is presented. To realize a moisture-enhanced learning ability and to adjust the aggregations of Ag ions, we introduced a thin polyvinylpyrrolidone (PVP) coating layer with moisture-sensitive properties to the surfaces of the Ag nanowires of Ag ions. That Ag nanowire network was shown to exhibit, in response to the humidity of its operating environment, different learning speeds during the LTP process. In high-humidity environments, the synaptic plasticity was significantly strengthened with a higher learning speed compared with that in relatively low-humidity environments. Based on experimental and simulation results, we attribute this enhancement to the higher electric mobility of the Ag ions in the water-absorbed PVP layer. Finally, we demonstrated by simulation that the moisture-enhanced synaptic plasticity enabled the device to adjust connection weights and delivery modes based on various input patterns. The recognition rate of a handwritten data set reached 94.5% with fewer epochs in a high-humidity environment. This work shows the feasibility of building our electronic device to achieve artificial adaptive learning abilities.
  13. Qin S, Chen M, Cheng AL, Kaseb AO, Kudo M, Lee HC, et al.
    Lancet, 2023 Nov 18;402(10415):1835-1847.
    PMID: 37871608 DOI: 10.1016/S0140-6736(23)01796-8
    BACKGROUND: No adjuvant treatment has been established for patients who remain at high risk for hepatocellular carcinoma recurrence after curative-intent resection or ablation. We aimed to assess the efficacy of adjuvant atezolizumab plus bevacizumab versus active surveillance in patients with high-risk hepatocellular carcinoma.

    METHODS: In the global, open-label, phase 3 IMbrave050 study, adult patients with high-risk surgically resected or ablated hepatocellular carcinoma were recruited from 134 hospitals and medical centres in 26 countries in four WHO regions (European region, region of the Americas, South-East Asia region, and Western Pacific region). Patients were randomly assigned in a 1:1 ratio via an interactive voice-web response system using permuted blocks, using a block size of 4, to receive intravenous 1200 mg atezolizumab plus 15 mg/kg bevacizumab every 3 weeks for 17 cycles (12 months) or to active surveillance. The primary endpoint was recurrence-free survival by independent review facility assessment in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT04102098.

    FINDINGS: The intention-to-treat population included 668 patients randomly assigned between Dec 31, 2019, and Nov 25, 2021, to either atezolizumab plus bevacizumab (n=334) or to active surveillance (n=334). At the prespecified interim analysis (Oct 21, 2022), median duration of follow-up was 17·4 months (IQR 13·9-22·1). Adjuvant atezolizumab plus bevacizumab was associated with significantly improved recurrence-free survival (median, not evaluable [NE]; [95% CI 22·1-NE]) compared with active surveillance (median, NE [21·4-NE]; hazard ratio, 0·72 [adjusted 95% CI 0·53-0·98]; p=0·012). Grade 3 or 4 adverse events occurred in 136 (41%) of 332 patients who received atezolizumab plus bevacizumab and 44 (13%) of 330 patients in the active surveillance group. Grade 5 adverse events occurred in six patients (2%, two of which were treatment related) in the atezolizumab plus bevacizumab group, and one patient (<1%) in the active surveillance group. Both atezolizumab and bevacizumab were discontinued because of adverse events in 29 patients (9%) who received atezolizumab plus bevacizumab.

    INTERPRETATION: Among patients at high risk of hepatocellular carcinoma recurrence following curative-intent resection or ablation, recurrence-free survival was improved in those who received atezolizumab plus bevacizumab versus active surveillance. To our knowledge, IMbrave050 is the first phase 3 study of adjuvant treatment for hepatocellular carcinoma to report positive results. However, longer follow-up for both recurrence-free and overall survival is needed to assess the benefit-risk profile more fully.

    FUNDING: F Hoffmann-La Roche/Genentech.

  14. Peng C, Wu C, Gao L, Zhang J, Alvin Yau KL, Ji Y
    Sensors (Basel), 2020 Sep 07;20(18).
    PMID: 32906707 DOI: 10.3390/s20185079
    The vehicular Internet of Things (IoT) comprises enabling technologies for a large number of important applications including collaborative autonomous driving and advanced transportation systems. Due to the mobility of vehicles, strict application requirements, and limited communication resources, the conventional centralized control fails to provide sufficient quality of service for connected vehicles, so a decentralized approach is required in the vicinity to satisfy the requirements of delay-sensitive and mission-critical applications. A decentralized system is also more resistant to the single point of failure problem and malicious attacks. Blockchain technology has been attracting great interest due to its capability of achieving a decentralized, transparent, and tamper-resistant system. There are many studies focusing on the use of blockchain in managing data and transactions in vehicular environments. However, the application of blockchain in vehicular environments also faces some technical challenges. In this paper, we first explain the fundamentals of blockchain and vehicular IoT. Then, we conduct a literature review on the existing research efforts of the blockchain for vehicular IoT by discussing the research problems and technical issues. After that, we point out some future research issues considering the characteristics of both blockchain and vehicular IoT.
  15. Nimptsch K, Song M, Aleksandrova K, Katsoulis M, Freisling H, Jenab M, et al.
    Eur J Epidemiol, 2017 May;32(5):419-430.
    PMID: 28550647 DOI: 10.1007/s10654-017-0262-y
    Higher levels of circulating adiponectin have been related to lower risk of colorectal cancer in several prospective cohort studies, but it remains unclear whether this association may be causal. We aimed to improve causal inference in a Mendelian Randomization meta-analysis using nested case-control studies of the European Prospective Investigation into Cancer and Nutrition (EPIC, 623 cases, 623 matched controls), the Health Professionals Follow-up Study (HPFS, 231 cases, 230 controls) and the Nurses' Health Study (NHS, 399 cases, 774 controls) with available data on pre-diagnostic adiponectin concentrations and selected single nucleotide polymorphisms in the ADIPOQ gene. We created an ADIPOQ allele score that explained approximately 3% of the interindividual variation in adiponectin concentrations. The ADIPOQ allele score was not associated with risk of colorectal cancer in logistic regression analyses (pooled OR per score-unit unit 0.97, 95% CI 0.91, 1.04). Genetically determined twofold higher adiponectin was not significantly associated with risk of colorectal cancer using the ADIPOQ allele score as instrumental variable (pooled OR 0.73, 95% CI 0.40, 1.34). In a summary instrumental variable analysis (based on previously published data) with higher statistical power, no association between genetically determined twofold higher adiponectin and risk of colorectal cancer was observed (0.99, 95% CI 0.93, 1.06 in women and 0.94, 95% CI 0.88, 1.01 in men). Thus, our study does not support a causal effect of circulating adiponectin on colorectal cancer risk. Due to the limited genetic determination of adiponectin, larger Mendelian Randomization studies are necessary to clarify whether adiponectin is causally related to lower risk of colorectal cancer.
  16. Machiela MJ, Zhou W, Karlins E, Sampson JN, Freedman ND, Yang Q, et al.
    Nat Commun, 2016 06 13;7:11843.
    PMID: 27291797 DOI: 10.1038/ncomms11843
    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases.
  17. Ma L, Liu X, Soh AK, He L, Wu C, Ni Y
    Soft Matter, 2019 May 15.
    PMID: 31090782 DOI: 10.1039/c9sm00507b
    Topological defect nucleation and boundary branching in crystal growth on a curved surface are two typical elastic instabilities driven by curvature induced stress, and have usually been discussed separately in the past. In this work they are simultaneously considered during crystal growth on a sphere. Phase diagrams with respect to sphere radius, size, edge energy and stiffness of the crystal for the equilibrium crystal morphologies are achieved by theoretical analysis and validated by Brownian dynamics simulations. The simulation results further demonstrate the detail of morphological evolution governed by these two different stress relaxation modes. Topological defect nucleation and boundary branching not only compete with each other but also coexist in a range of combinations of factors. Clarification of the interaction mechanism provides a better understanding of various curved crystal morphologies for their potential applications.
  18. Luo R, Li R, Zheng Z, Zhang L, Xie L, Wu C, et al.
    Environ Pollut, 2024 Apr 23;351:124026.
    PMID: 38663509 DOI: 10.1016/j.envpol.2024.124026
    To develop a highly efficient adsorbent to remediate and remove hexavalent chromium ions (Cr(VI)) from polluted water, cellulose acetate (CA) and chitosan (CS), along with metal oxides (titanium dioxide (TiO2) and ferroferric oxide (Fe3O4)), and a zirconium-based metal-organic framework (UiO-66) were used to fabricate the composite porous nanofiber membranes through electrospinning. The adsorption performance, influencing factors, adsorption kinetics and isotherms of composite nanofiber membranes were comprehensively investigated. The multi-layer membrane with interpenetrating nanofibers and surface functional groups enhanced the natural physical adsorption and provided potential chemical sites. The thermal stability was improved by introducing TiO2 and UiO-66. CA/CS/UiO-66 exhibited the highest adsorption capacity (118.81 mg g-1) and removal rate (60.76%), which were twice higher than those of the control. The correlation coefficients (R2) of all the composite nanofibers regressed by the Langmuir model were significantly higher than those by the Freundlich model. The pseudo-first-order kinetic curve of CA/CS composite nanofibers showed the highest R2 (0.973), demonstrating that the whole adsorption process involved a combination of strong physical adsorption and weak chemical adsorption by the amino groups of CS. However, the R2 values of the pseudo-second-order kinetic model increased after incorporating TiO2, Fe3O4, and UiO-66 into the CA/CS composite nanofiber membranes since an enhanced chemical reaction with Cr (VI) occured during the adsorption.
  19. Lou J, Wu C, Wang H, Cao S, Wei Y, Chen Y, et al.
    Food Chem, 2023 May 15;408:135185.
    PMID: 36525725 DOI: 10.1016/j.foodchem.2022.135185
    The effect of melatonin treatment on the carotenoid metabolism in broccoli florets during storage was explored. The results indicated that 100 µmol/L of melatonin maintained the sensory quality of broccoli florets, which retarded the increase of the L* value and the decrease of the H value. Melatonin treatment increased the activities of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT) and N-acetylserotonin methyltransferase (ASMT), leading to the enrichment of endogenous melatonin content in broccoli florets. Meanwhile, the treatment inhibited the concentrations of β-carotene, β-cryptoxanthin, zeaxanthin and lutein, which was beneficial in delaying the yellowing of broccoli. In addition, a series of carotenoid biosynthetic genes such as BoPSY, BoPDS, BoZDS, BoLCYβ and BoZEP was also suppressed by melatonin. Further analysis revealed that the lower carotenoid content and the down-regulated BoNCED expression in treated broccoli resulted in less accumulation of abscisic acid precursors, inhibiting abscisic acid production during the yellowing process.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links