Displaying publications 1 - 20 of 99 in total

Abstract:
Sort:
  1. Laila L, Febriyenti F, Salhimi SM, Baie S
    Int Wound J, 2011 Oct;8(5):484-91.
    PMID: 21722317 DOI: 10.1111/j.1742-481X.2011.00820.x
    Haruan (Channa striatus) is a type of fresh water fish in Malaysia that is known to promote wound healing. Haruan water extract has been formulated in an aerosol system which can produce a film for wound dressing. As topical preparation, Haruan spray needs to be evaluated in terms of the possibility to cause irritation reaction or toxic response. Three experiments were carried out to evaluate the safety of Haruan spray which are Primary Skin Irritation test, Intracutaneous test and Systemic Injection test. The result shows that Haruan spray gave no significant responses to all the above tests. The investigation of the effect of Haruan spray as wound dressing in the healing process was performed in Sprague-Dawley rats where 6-cm long full-thickness incision wound and burn wound were made on the back of the animals. Haruan spray was tested and compared with blank formula as control. Tensile strength test of treated wound was carried out at the 3rd, 6th, 9th and 12th day after wounding and treatment. The burn wounds contraction was measured daily for 21 days. Results showed that haruan water extract spray formula is not only effective but also safe for application to both incision and burn wounds.
    Matched MeSH terms: Aerosols/administration & dosage*
  2. Vinjamuri KS, Mhawish A, Banerjee T, Sorek-Hamer M, Broday DM, Mall RK, et al.
    Environ Pollut, 2020 Feb;257:113377.
    PMID: 31672363 DOI: 10.1016/j.envpol.2019.113377
    Attenuated backscatter profiles retrieved by the space borne active lidar CALIOP on-board CALIPSO satellite were used to measure the vertical distribution of smoke aerosols and to compare it against the ECMWF planetary boundary layer height (PBLH) over the smoke dominated region of Indo-Gangetic Plain (IGP), South Asia. Initially, the relative abundance of smoke aerosols was investigated considering multiple satellite retrieved aerosol optical properties. Only the upper IGP was selectively considered for CALIPSO retrieval based on prevalence of smoke aerosols. Smoke extinction was found to contribute 2-50% of the total aerosol extinction, with strong seasonal and altitudinal attributes. During winter (DJF), smoke aerosols contribute almost 50% of total aerosol extinction only near to the surface while in post-monsoon (ON) and monsoon (JJAS), relative contribution of smoke aerosols to total extinction was highest at about 8 km height. There was strong diurnal variation in smoke extinction, evident throughout the year, with frequent abundance of smoke particles at lower height (<4 km) during daytime compared to higher height during night (>4 km). Smoke injection height also varied considerably during rice (ON: 0.71 ± 0.65 km) and wheat (AM: 2.34 ± 1.34 km) residue burning period having a significant positive correlation with prevailing PBLH. Partitioning smoke AOD against PBLH into the free troposphere (FT) and boundary layer (BL) yield interesting results. BL contribute 36% (16%) of smoke AOD during daytime (nighttime) and the BL-FT distinction increased particularly at night. There was evidence that despite travelling efficiently to FT, major proportion of smoke AOD (50-80%) continue to remain close to the surface (<3 km) thereby, may have greater implications on regional climate, air quality, smoke transport and AOD-particulate modelling.
    Matched MeSH terms: Aerosols/chemistry*
  3. Foo CY, Lim HN, Pandikumar A, Huang NM, Ng YH
    J Hazard Mater, 2016 Mar 5;304:400-8.
    PMID: 26595899 DOI: 10.1016/j.jhazmat.2015.11.004
    A newly developed CdS/rGO/CC electrode was prepared based on a flexible carbon cloth (CC) substrate with cadmium sulfide (CdS) nanoparticles and reduced graphene oxide (rGO). The CdS was synthesized using an aerosol-assisted chemical vapor deposition (AACVD) method, and the graphene oxide was thermally reduced on the modified electrode surface. The existence of rGO in the CdS-modified electrode increased the photocurrent intensity of the CdS/rGO/CC-modified electrode by three orders of magnitude, compared to that of the CdS/ITO electrode and two orders of magnitude higher than the CdS/CC electrode. A new visible-light-prompt photoelectrochemical sensor was developed based on the competitive binding reaction of Cu(2+) and CdS on the electrode surface. The results showed that the effect of the Cu(2+) on the photocurrent response was concentration-dependent over the linear ranges of 0.1-1.0 μM and 1.0-40.0 μM with a detection limit of 0.05 μM. The results of a selectivity test showed that this modified electrode has a high response toward Cu(2+) compared to other heavy metal ions. The proposed CdS/rGO/CC electrode provided a significantly high potential current compared to other reported values, and could be a practical tool for the fast, sensitive, and selective determination of Cu(2+).
    Matched MeSH terms: Aerosols
  4. Leow VM, Mohamad IS, Subramaniam M
    BMJ Case Rep, 2020 Jul 16;13(7).
    PMID: 32675132 DOI: 10.1136/bcr-2020-236918
    WHO declared worldwide outbreak of COVID-19 a pandemic on 11 March 2020. Healthcare authorities have temporarily stopped all elective surgical and endoscopy procedures. Nevertheless, there is a subset of patients who require emergency treatment such as aerosol-generating procedures. Herein, we would like to discuss the management of a patient diagnosed with impending biliary sepsis during COVID-19 outbreak. The highlight of the discussion is mainly concerning the advantages of concurrent use of aerosol protective barrier in addition to personal protective equipment practice, necessary precautions to be taken during endoscopy retrograde cholangiopancreatography and handling of the patient preprocedure and postprocedure.
    Matched MeSH terms: Aerosols
  5. Li Q, Zhang K, Li R, Yang L, Yi Y, Liu Z, et al.
    Sci Total Environ, 2023 May 10;872:162071.
    PMID: 36775179 DOI: 10.1016/j.scitotenv.2023.162071
    Biomass burning (BB) has significant impacts on air quality and climate change, especially during harvest seasons. In previous studies, levoglucosan was frequently used for the calculation of BB contribution to PM2.5, however, the degradation of levoglucosan (Lev) could lead to large uncertainties. To quantify the influence of the degradation of Lev on the contribution of BB to PM2.5, PM2.5-bound biomass burning-derived markers were measured in Changzhou from November 2020 to March 2021 using the thermal desorption aerosol gas chromatography-mass spectrometry (TAG-GC/MS) system. Temporal variations of three anhydro-sugar BB tracers (e.g., levoglucosan, mannosan (Man), and galactosan (Gal)) were obtained. During the sampling period, the degradation level of air mass (x) was 0.13, indicating that ~87 % of levoglucosan had degraded before sampling in Changzhou. Without considering the degradation of levoglucosan in the atmosphere, the contribution of BB to OC were 7.8 %, 10.2 %, and 9.3 % in the clean period, BB period, and whole period, respectively, which were 2.4-2.6 times lower than those (20.8 %-25.9 %) considered levoglucosan degradation. This illustrated that the relative contribution of BB to OC could be underestimated (~14.9 %) without considering degradation of levoglucosan. Compared to the traditional method (i.e., only using K+ as BB tracer), organic tracers (Lev, Man, Gal) were put into the Positive Matrix Factorization (PMF) model in this study. With the addition of BB organic tracers and replaced K+ with K+BB (the water-soluble potassium produced by biomass burning), the overall contribution of BB to PM2.5 was enhanced by 3.2 % after accounting for levoglucosan degradation based on the PMF analysis. This study provides useful information to better understand the effect of biomass burning on the air quality in the Yangtze River Delta region.
    Matched MeSH terms: Aerosols/analysis
  6. Zainudin BM, Rafia MH, Sufarlan AW
    Singapore Med J, 1993 Apr;34(2):148-9.
    PMID: 8266157
    Lignocaine spray for anaesthetising the nasal mucosa for fibreoptic bronchoscopy often causes discomfort to the patient. We compared two techniques of applying nasal topical anaesthesia using either lignocaine spray (group A: 25 patients) or gel (group B: 30 patients) to assess patients' tolerance to the procedure. Both groups received 100 mg of lignocaine in the nostril, 40-50 mg to oropharynx, 120 mg to vocal cords and 40-100 mg to trachea and bronchi. Throat anaesthesia was the most common unpleasant part experienced by both groups of patients (34.5%), followed by examination of bronchi (30.6%) and nasal anaesthesia (21.8%). Significantly more patients in group A experienced discomfort or pain during nasal anaesthesia as compared to group B (p < 0.001). Patients' tolerance to the bronchoscopy was similar in both groups and the examination was performed satisfactorily in all patients. Thus, lignocaine gel is a simple technique, effective and less irritating as compared to lignocaine spray for topical nasal anaesthesia.
    Matched MeSH terms: Aerosols
  7. Seleena P, Lee HL, Chiang YF
    J Vector Ecol, 2001 Jun;26(1):110-3.
    PMID: 11469179
    Matched MeSH terms: Aerosols
  8. Cheng-Yong H, Yun-Ming L, Abdullah MM, Hussin K
    Sci Rep, 2017 03 27;7:45355.
    PMID: 28345643 DOI: 10.1038/srep45355
    This paper presents a comparative study of the characteristic of unfoamed and foamed geopolymers after exposure to elevated temperatures (200-800 °C). Unfoamed geopolymers were produced with Class F fly ash and sodium hydroxide and liquid sodium silicate. Porous geopolymers were prepared by foaming with hydrogen peroxide. Unfoamed geopolymers possessed excellent strength of 44.2 MPa and degraded 34% to 15 MPa in foamed geopolymers. The strength of unfoamed geopolymers decreased to 5 MPa with increasing temperature up to 800 °C. Foamed geopolymers behaved differently whereby they deteriorated to 3 MPa at 400 °C and increased up to 11 MPa at 800 °C. Even so, the geopolymers could withstand high temperature without any disintegration and spalling up to 800 °C. The formation of crystalline phases at higher temperature was observed deteriorating the strength of unfoamed geopolymers but enhance the strength of foamed geopolymers. In comparison, foamed geopolymer had better thermal resistance than unfoamed geopolymers as pores provide rooms to counteract the internal damage.
    Matched MeSH terms: Aerosols
  9. Zainudin BM
    Med J Malaysia, 1993 Sep;48(3):259-68.
    PMID: 8183136
    Delivering a drug direct to the site of disease has several advantages. In the case of aerosols, it only requires about one-twentieth of the oral dose of the drug to exert its effect, thus resulting in less or minimal systemic side-effects. The onset of action is fast and the efficacy is superior to the oral drug. Because of the anatomy of the airways which are protective against the inhalation of foreign substances, the aerosol particles must be inhaled in an optimal way in order to reach the sites of action which are the peripheral airways. The particle size must be small and the aerosol must be inhaled in a coordinated manner, especially when a pressurised metered dose inhaler is used. Because of the high pressure of the propellants used in the canister, the particles will travel at a rapid speed upon actuating, causing great impaction in the throat. Only a small percentage reaches the peripheral airways and this percentage is even smaller if the coordination between actuation and inhalation is poor. Spacers have been shown to be able to overcome this problem of incoordination and to reduce throat impaction. Alternatively, the breath-actuated dry powder inhaler can be effectively used. The nebuliser, which is another aerosol delivery system, needs proper setting of the flow rate of compressed air and an appropriate volume of solution in order to optimise the drug delivery.
    Matched MeSH terms: Aerosols/therapeutic use*
  10. Bell IG, Nicholls PJ, Norman C, Ideris A, Cross GM
    Aust. Vet. J., 1991 Mar;68(3):97-101.
    PMID: 2043098
    Meat chickens housed on a commercial broiler farm in Australia were vaccinated once at 10 to 11 days-of-age by aerosol with live V4 Newcastle disease virus (NDV) vaccine. Groups of vaccinated and unvaccinated birds were flown to Malaysia, where they were challenged with a virulent strain of NDV. Survival rates in vaccinated chickens challenged 7, 14, 21 or 31 d after vaccination were 0.47, 0.77, 0.97 and 0.92, respectively. All unvaccinated chickens died due to Newcastle disease (ND) following challenge. Chickens in Australia and Malaysia were bled and the serums tested for haemagglutination-inhibiting (HI) antibody to NDV. Many vaccinated birds with no detectable antibody, and all birds with a log2 titre of 2 or greater, survived challenge. The results showed that this V4 vaccine induced protective immunity in a significant proportion of chickens within 7 d of mass aerosol vaccination. This early immunity occurred in the absence of detectable circulating HI antibody. Non-HI antibody mediated immunity continued to provide protection up to 31 d after vaccination. Almost all vaccinated birds were protected within 3 w of vaccination. It is concluded that the V4 vaccine is efficacious and could be useful during an outbreak of virulent ND in Australia.
    Matched MeSH terms: Aerosols
  11. Dua K, Wadhwa R, Singhvi G, Rapalli V, Shukla SD, Shastri MD, et al.
    Drug Dev Res, 2019 09;80(6):714-730.
    PMID: 31691339 DOI: 10.1002/ddr.21571
    Lung diseases are the leading cause of mortality worldwide. The currently available therapies are not sufficient, leading to the urgent need for new therapies with sustained anti-inflammatory effects. Small/short or silencing interfering RNA (siRNA) has potential therapeutic implications through post-transcriptional downregulation of the target gene expression. siRNA is essential in gene regulation, so is more favorable over other gene therapies due to its small size, high specificity, potency, and no or low immune response. In chronic respiratory diseases, local and targeted delivery of siRNA is achieved via inhalation. The effectual delivery can be attained by the generation of aerosols via inhalers and nebulizers, which overcomes anatomical barriers, alveolar macrophage clearance and mucociliary clearance. In this review, we discuss the different siRNA nanocarrier systems for chronic respiratory diseases, for safe and effective delivery. siRNA mediated pro-inflammatory gene or miRNA targeting approach can be a useful approach in combating chronic respiratory inflammatory conditions and thus providing sustained drug delivery, reduced therapeutic dose, and improved patient compliance. This review will be of high relevance to the formulation, biological and translational scientists working in the area of respiratory diseases.
    Matched MeSH terms: Aerosols
  12. Misni N, Othman H, Sulaiman S
    Trop Biomed, 2011 Aug;28(2):249-58.
    PMID: 22041743
    The bioefficacy of Piper aduncum L. essential oil formulated in aerosol cans was evaluated against Aedes aegypti and Aedes albopictus in a simulated room. The aerosol spray test was based on the Malaysian test standard for aerosol (MS 1221:1991UDC 632.982.2 modified from WHO 2009 methodology) and examined the knockdown effect within 20 minutes of exposure. Mortality rate after 24 hour of holding period was also determined. A commercial aerosol spray (0.09% prallethrin 0.05% d-phenothrin) was also tested as a comparison. Our results showed that the knockdown effect of the commercial aerosol spray and P. aduncum essential oil spray (8% and 10% concentrations) was significantly higher in Ae. albopictus adult females, when compared with that of Ae. aegypti adult females (P<0.05). There was a significant difference in knockdown between commercial aerosol spray and essential oil spray for both Aedes spp. (P<0.05). The essential oil induced significantly higher mortality in Ae. aegypti (80%) than in Ae. albopictus (71.6%) (P<0.05). The commercial aerosol spray caused 97.7% and 86.5% mortality against Ae. aegypti and Ae. albopictus respectively (P<0.05). Based on these data, P. aduncum essential oil has the potential to be used as an aerosol spray against Aedes spp.
    Matched MeSH terms: Aerosols*
  13. Hasmi AH, Khoo LS, Koo ZP, Suriani MUA, Hamdan AN, Yaro SWM, et al.
    Forensic Sci Med Pathol, 2020 09;16(3):477-480.
    PMID: 32500339 DOI: 10.1007/s12024-020-00270-z
    During a disease pandemic, there is still a requirement to perform postmortem examinations within the context of legal considerations. The management of the dead from COVID-19 should not impede the medicolegal investigation of the death where required by the authorities and legislation but additional health and safety precautions should be adopted for the necessary postmortem procedures. The authors have therefore used the craniotomy box in an innovative way to enable a safe alternative for skull and brain removal procedures on suspected or confirmed COVID-19 bodies. The craniotomy box technique was tested on a confirmed COVID-19 positive body where a full postmortem examination was performed by a team of highly trained personnel in a negative pressure Biosafety Level 3 (BSL-3) autopsy suite in the National Institute of Forensic Medicine (IPFN) Malaysia. This craniotomy box is a custom-made transparent plastic box with five walls but without a floor. Two circular holes were made in one wall for the placement of arms in order to perform the skull opening procedure. A swab to detect the presence of the SARS-CoV-2 virus was taken from the interior surface of the craniotomy box after the procedure. The result from the test using real-time reverse transcriptase polymerase chain reaction (rRT-PCR) proved that an additional barrier provided respiratory protection by containing the aerosols generated from the skull opening procedure. This innovation ensures procedures performed inside this craniotomy box are safe for postmortem personnel performing high risk autopsies during pandemics.
    Matched MeSH terms: Aerosols
  14. MacKenzie AR, Langford B, Pugh TA, Robinson N, Misztal PK, Heard DE, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3177-95.
    PMID: 22006961 DOI: 10.1098/rstb.2011.0053
    We report measurements of atmospheric composition over a tropical rainforest and over a nearby oil palm plantation in Sabah, Borneo. The primary vegetation in each of the two landscapes emits very different amounts and kinds of volatile organic compounds (VOCs), resulting in distinctive VOC fingerprints in the atmospheric boundary layer for both landscapes. VOCs over the Borneo rainforest are dominated by isoprene and its oxidation products, with a significant additional contribution from monoterpenes. Rather than consuming the main atmospheric oxidant, OH, these high concentrations of VOCs appear to maintain OH, as has been observed previously over Amazonia. The boundary-layer characteristics and mixing ratios of VOCs observed over the Borneo rainforest are different to those measured previously over Amazonia. Compared with the Bornean rainforest, air over the oil palm plantation contains much more isoprene, monoterpenes are relatively less important, and the flower scent, estragole, is prominent. Concentrations of nitrogen oxides are greater above the agro-industrial oil palm landscape than over the rainforest, and this leads to changes in some secondary pollutant mixing ratios (but not, currently, differences in ozone). Secondary organic aerosol over both landscapes shows a significant contribution from isoprene. Primary biological aerosol dominates the super-micrometre aerosol over the rainforest and is likely to be sensitive to land-use change, since the fungal source of the bioaerosol is closely linked to above-ground biodiversity.
    Matched MeSH terms: Aerosols/chemistry
  15. Shamsiah A. Rahman, Mohd Suhaimi Hamzah, Abdul Khalik Wood, Md Suhaimi Elias, Nazaratul Ashifa Abdullah Salim, Ezwiza Sanuri
    MyJurnal
    Chemical composition of fine (PM2.5) aerosol samples collected for the 5 years period (2001- 2005) using Gent Stacked filter unit sampler at Klang Valley (3 o 10 ’ 30 ’’ N, 101 o 43 ’ 24 ’’ E) were analysed using Neutron Activation Analysis (NAA) and Proton Induced X-ray Emission (PIXE). Results of the study show that the major component of the fine aerosol was black carbon and sulfur with the mass concentration ranged from 4.4 - 6.7µg m -3 and 1.2 - 1.9µg m -3 , respectively. The total fine aerosol mass concentration were in the ranged of 25 - 31µg m -3 with the reconstructed mass was about 50% as relative to the gravimetric mass. Statistical method, factor analysis with varimax approach has been applied to the aerosol composition data for the fingerprint identification. The analysis produces five identified fingerprint represent soil, industry, motor vehicles/biomass burning and Pb and Zn sources. There is also an unidentified source that could be related to unknown industrial activities.
    Matched MeSH terms: Aerosols
  16. Lee JH, Hammoud DA, Cong Y, Huzella LM, Castro MA, Solomon J, et al.
    J Infect Dis, 2020 05 11;221(Suppl 4):S419-S430.
    PMID: 31687756 DOI: 10.1093/infdis/jiz502
    Nipah virus (NiV) is an emerging virus associated with outbreaks of acute respiratory disease and encephalitis. To develop a neurological model for NiV infection, we exposed 6 adult African green monkeys to a large-particle (approximately 12 μm) aerosol containing NiV (Malaysian isolate). Brain magnetic resonance images were obtained at baseline, every 3 days after exposure for 2 weeks, and then weekly until week 8 after exposure. Four of six animals showed abnormalities reminiscent of human disease in brain magnetic resonance images. Abnormalities ranged from cytotoxic edema to vasogenic edema. The majority of lesions were small infarcts, and a few showed inflammatory or encephalitic changes. Resolution or decreased size in some lesions resembled findings reported in patients with NiV infection. Histological lesions in the brain included multifocal areas of encephalomalacia, corresponding to known ischemic foci. In other regions of the brain there was evidence of vasculitis, with perivascular infiltrates of inflammatory cells and rare intravascular fibrin thrombi. This animal model will help us better understand the acute neurological features of NiV infection and develop therapeutic approaches for managing disease caused by NiV infection.
    Matched MeSH terms: Aerosols
  17. Siah KTH, Rahman MM, Ong AML, Soh AYS, Lee YY, Xiao Y, et al.
    J Neurogastroenterol Motil, 2020 07 30;26(3):299-310.
    PMID: 32606253 DOI: 10.5056/jnm20107
    During the Coronavirus Disease 2019 (COVID-19) pandemic, practices of gastrointestinal procedures within the digestive tract require special precautions due to the risk of contraction of severe acute respiratoy syndrome coronavirus-2 (SARS-CoV-2) infection. Many procedures in the gastrointestinal motility laboratory may be considered moderate to high-risk for viral transmission. Healthcare staff working in gastrointestinal motility laboratories are frequently exposed to splashes, air droplets, mucus, or saliva during the procedures. Moreover, some are aerosol-generating and thus have a high risk of viral transmission. There are multiple guidelines on the practices of gastrointestinal endoscopy during this pandemic. However, such guidelines are still lacking and urgently needed for the practice of gastrointestinal motility laboratories. Hence, the Asian Neurogastroenterology and Motility Association had organized a group of gastrointestinal motility experts and infectious disease specialists to produce a position statement paper based-on current available evidence and consensus opinion with aims to provide a clear guidance on the practices of gastrointestinal motility laboratories during the COVID-19 pandemic. This guideline covers a wide range of topics on gastrointestinal motility activities from scheduling a motility test, the precautions at different steps of the procedure to disinfection for the safety and well-being of the patients and the healthcare workers. These practices may vary in different countries depending on the stages of the pandemic, local or institutional policy, and the availability of healthcare resources. This guideline is useful when the transmission rate of SARS-CoV-2 is high. It may change rapidly depending on the situation of the epidemic and when new evidence becomes available.
    Matched MeSH terms: Aerosols
  18. Roslan RN, Hanif NM, Othman MR, Azmi WN, Yan XX, Ali MM, et al.
    Mar Pollut Bull, 2010 Sep;60(9):1584-90.
    PMID: 20451220 DOI: 10.1016/j.marpolbul.2010.04.004
    A study was done to determine the concentrations of surfactants on the sea-surface microlayer and in atmospheric aerosols in several coastal areas around the Malaysian peninsula. The concentrations of surfactants from the sea-surface microlayer (collected using rotation drum) and from aerosols (collected using HVS) were analyzed as methylene blue active substances and disulphine blue active substances through the colorimetric method using a UV-vis spectrophotometer. The results of this study showed that the average concentrations of surfactants in the sea-surface microlayer ranged between undetected and 0.36+/-0.34 micromol L(-1) for MBAS and between 0.11+/-0.02 and 0.21+/-0.13 micromol L(-1) for DBAS. The contribution of surfactants from the sea-surface microlayer to the composition of surfactants in atmospheric aerosols appears to be very minimal and more dominant in fine mode aerosols.
    Matched MeSH terms: Aerosols/analysis*
  19. Jaafar SA, Latif MT, Chian CW, Han WS, Wahid NB, Razak IS, et al.
    Mar Pollut Bull, 2014 Jul 15;84(1-2):35-43.
    PMID: 24930738 DOI: 10.1016/j.marpolbul.2014.05.047
    This study was conducted to determine the composition of surfactants in the sea-surface microlayer (SML) and atmospheric aerosol around the southern region of the Peninsular Malaysia. Surfactants in samples taken from the SML and atmospheric aerosol were determined using a colorimetric method, as either methylene blue active substances (MBAS) or disulphine blue active substances (DBAS). Principal component analysis with multiple linear regressions (PCA-MLR), using the anion and major element composition of the aerosol samples, was used to determine possible sources of surfactants in atmospheric aerosol. The results showed that the concentrations of surfactants in the SML and atmospheric aerosol were dominated by anionic surfactants and that surfactants in aerosol were not directly correlated (p>0.05) with surfactants in the SML. Further PCA-MLR from anion and major element concentrations showed that combustion of fossil fuel and sea spray were the major contributors to surfactants in aerosol in the study area.
    Matched MeSH terms: Aerosols/chemistry*
  20. Shaharom S, Latif MT, Khan MF, Yusof SNM, Sulong NA, Wahid NBA, et al.
    Environ Sci Pollut Res Int, 2018 Sep;25(27):27074-27089.
    PMID: 30019134 DOI: 10.1007/s11356-018-2745-0
    This study aims to determine the concentrations of surfactants in the surface microlayer (SML), subsurface water (SSW) and fine mode aerosol (diameter size
    Matched MeSH terms: Aerosols/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links