Displaying publications 1 - 20 of 70 in total

Abstract:
Sort:
  1. Karami A, Golieskardi A, Choo CK, Romano N, Ho YB, Salamatinia B
    Sci Total Environ, 2017 Feb 01;578:485-494.
    PMID: 27836345 DOI: 10.1016/j.scitotenv.2016.10.213
    So far, several classes of digesting solutions have been employed to extract microplastics (MPs) from biological matrices. However, the performance of digesting solutions across different temperatures has never been systematically investigated. In the first phase of the present study, we measured the efficiency of different oxidative agents (NaClO or H2O2), bases (NaOH or KOH), and acids [HCl or HNO3; concentrated and diluted (5%)] in digesting fish tissues at room temperature (RT, 25°C), 40, 50, or 60°C. In the second phase, the treatments that were efficient in digesting the biological materials (>95%) were evaluated for their compatibility with eight major plastic polymers (assessed through recovery rate, Raman spectroscopy analysis, and morphological changes). Among the tested solutions, NaClO, NaOH, and diluted acids did not result in a satisfactory digestion efficiency at any of the temperatures. The H2O2 treatment at 50°C efficiently digested the biological materials, although it decreased the recovery rate of nylon-6 (NY6) and nylon-66 (NY66) and altered the colour of polyethylene terephthalate (PET) fragments. Similarly, concentrated HCl and HNO3 treatments at RT fully digested the fish tissues, but also fully dissolved NY6 and NY66, and reduced the recovery rate of most or all of the polymers, respectively. Potassium hydroxide solution fully eliminated the biological matrices at all temperatures. However, at 50 and 60°C, it degraded PET, reduced the recovery rate of PET and polyvinyl chloride (PVC), and changed the colour of NY66. According to our results, treating biological materials with a 10% KOH solution and incubating at 40°C was both time and cost-effective, efficient in digesting biological materials, and had no impact on the integrity of the plastic polymers. Furthermore, coupling this treatment with NaI extraction created a promising protocol to isolate MPs from whole fish samples.
    Matched MeSH terms: Alkalies/chemistry
  2. Amarasingham RD, Lee H
    Med J Malaya, 1969 Mar;23(3):220-7.
    PMID: 4240079
    Matched MeSH terms: Alkalies/poisoning
  3. Shah SN, Tan TH, Tey OW, Leong GW, Chin YS, Yuen CW, et al.
    Sci Prog, 2022;105(2):368504221091186.
    PMID: 35379044 DOI: 10.1177/00368504221091186
    Lightweight cementitious composite (LCC) produced by incorporating lightweight silica aerogel was explored in this study. Silica aerogel was incorporated as 60% replacement of fine aggregate (sand/crushed glass) in producing the LCC. The effect of aerogel on the drying shrinkage and alkali-silica expansion of LCC was evaluated and compared with those of lightweight expanded perlite aggregate. At the density of 1600  ±  100 kg/m3, the aerogel/ expanded perlite LCC had attained compressive strength of about 17/24 MPa and 22/26 MPa in mixtures with sand and crushed glass as a fine aggregate, respectively. The inclusion of aerogel and expanded perlite increased the drying shrinkage. The drying shrinkage of aerogel LCC was up to about 3 times of the control mixtures. Although the presence of aerogel and expanded perlite could reduce the alkali-silica expansion when partially replacing crushed glass, the aerogel-glass LCC still recorded expansion exceeding the maximum limit of 0.10% at 14 days. However, when 15% cement was replaced with fly ash and granulated blast furnace slag, the alkali-silica expansion was reduced to 0.03% and 0.10%, respectively. Microstructural observations also revealed that the aerogel with fly ash can help in reducing the alkali-silica expansion in mixes containing the reactive crushed glass aggregate.
    Matched MeSH terms: Alkalies*
  4. Salihu A, Abbas O, Sallau AB, Alam MZ
    3 Biotech, 2015 Dec;5(6):1101-1106.
    PMID: 28324400 DOI: 10.1007/s13205-015-0294-5
    Different agricultural residues were considered in this study for their ability to support cellulolytic enzyme production by Aspergillus niger. A total of eleven agricultural residues including finger millet hulls, sorghum hulls, soybean hulls, groundnut husk, banana peels, corn stalk, cassava peels, sugarcane bagasse, saw dust, rice straw and sheanut cake were subjected to three pretreatment (acid, alkali and oxidative) methods. All the residues supported the growth and production of cellulases by A. niger after 96 h of incubation. Maximum cellulase production was found in alkali-treated soybean hulls with CMCase, FPase and β-glucosidase yields of 9.91 ± 0.04, 6.20 ± 0.13 and 5.69 ± 0.29 U/g, respectively. Further studies in assessing the potential of soybean hulls are being considered to optimize the medium composition and process parameters for enhanced cellulase production.
    Matched MeSH terms: Alkalies
  5. Sucinda EF, Abdul Majid MS, Ridzuan MJM, Sultan MTH, Gibson AG
    Int J Biol Macromol, 2020 Jul 15;155:241-248.
    PMID: 32240733 DOI: 10.1016/j.ijbiomac.2020.03.199
    Cellulose nanowhisker (NWC) was extracted by hydrolysing Pennisetum purpureum (PP) fibres with acid and alkali. They were subjected to different periods of acid hydrolysis; 30, 45, and 60 min. NWC morphology and physicochemical properties were characterised by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), particle size analyser, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and thermogravimetric analysis. NWC3, which underwent the longest hydrolysis time, showed the smallest width and length, under TEM. All samples presented a needle-like shape under TEM and AFM; uneven lengths and irregular shapes under FESEM; and a broad range of distribution, with the particle size analyser. All samples exhibited a good crystallinity index (CrI)-72.0 to 74.6%. The highest CrI% corresponded to 60 min of acid hydrolysis. Thermogravimetric analysis showed thermal stability between 310.72 °C and 336.28 °C. Thus, cellulose nanowhisker from PP fibres, have high potential as bio-nanocomposites.
    Matched MeSH terms: Alkalies
  6. Bashkaran K, Zunaina E, Bakiah S, Sulaiman SA, Sirajudeen K, Naik V
    PMID: 21982267 DOI: 10.1186/1472-6882-11-90
    Alkali injury is one of the most devastating injuries to the eye. It results in permanent unilateral or bilateral visual impairment. Chemical eye injury is accompanied by an increase in the oxidative stress. Anti-inflammatory and antioxidant agents play a major role in the treatment of chemical eye injuries. The purpose of this study is to evaluate the anti-inflammatory (clinical and histopathological) and antioxidant effects of Tualang honey versus conventional treatment in alkali injury on the eyes of rabbits.
    Matched MeSH terms: Alkalies/adverse effects
  7. Jalilavi M, Zoveidavianpoor M, Attarhamed F, Junin R, Mohsin R
    Sci Rep, 2014;4:3645.
    PMID: 24413195 DOI: 10.1038/srep03645
    Formation of carbonate minerals by CO2 sequestration is a potential means to reduce atmospheric CO2 emissions. Vast amount of alkaline and alkali earth metals exist in silicate minerals that may be carbonated. Laboratory experiments carried out to study the dissolution rate in Pahang Sandstone, Malaysia, by CO2 injection at different flow rate in surficial condition. X-ray Powder Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDX), Atomic Absorption Spectroscopy (AAS) and weight losses measurement were performed to analyze the solid and liquid phase before and after the reaction process. The weight changes and mineral dissolution caused by CO2 injection for two hours CO2 bubbling and one week' aging were 0.28% and 18.74%, respectively. The average variation of concentrations of alkaline earth metals in solution varied from 22.62% for Ca(2+) to 17.42% for Mg(2+), with in between 16.18% observed for the alkali earth metal, potassium. Analysis of variance (ANOVA) test is performed to determine significant differences of the element concentration, including Ca, Mg, and K, before and after the reaction experiment. Such changes show that the deposition of alkali and alkaline earth metals and the dissolution of required elements in sandstone samples are enhanced by CO2 injection.
    Matched MeSH terms: Alkalies
  8. Khanna RK, Mokhtar E
    Indian J Ophthalmol, 2008 8 20;56(5):429-30.
    PMID: 18711278
    To describe use of a locally processed bovine pericardium (BP) to cover a large central corneal perforation following alkali injury and discuss postoperative outcome. A 27-year-old Malay male patient presented two weeks after alkali splashed in his left eye while working. A clinical diagnosis of left central corneal ulcer with limbal ischemia following alkali injury with secondary infection was made. After failed medical therapy, we performed a Gunderson conjunctival flap under local anesthesia that retracted after one week and resulted in a large central corneal perforation with surrounding stromal thinning. The perforation was covered with a locally processed BP xenograft (Lyolemb) supplied by the National Tissue Bank, University Sains Malaysia. Nine months follow-up showed a well-taken graft without any exposure/dehiscence and minimal inflammation. Amniotic membrane transplantation when used as a patch graft needs an urgent tectonic graft to promote corneal stability in patients with severe corneal thinning. The use of processed BP can be a viable option in treating such cases.
    Matched MeSH terms: Alkalies/adverse effects*
  9. Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M
    Bioresour Technol, 2013 Sep;144:288-95.
    PMID: 23880130 DOI: 10.1016/j.biortech.2013.06.059
    This study investigates the influence of alkali (Na, K), alkaline earth (Ca, Mg) and transition (Fe) metal nitrates on CO2 gasification reactivity of pistachio nut shell (PNS) char. The preliminary gasification experiments were performed in thermogravimetric analyzer (TGA) and the results showed considerable improvement in carbon conversion; Na-char>Ca-char>Fe-char>K-char>Mg-char>raw char. Based on TGA studies, NaNO3 (with loadings of 3-7 wt%) was selected as the superior catalyst for further gasification studies in bench-scale reactor; the highest reactivity was devoted to 5 wt% Na loaded char. The data acquired for gasification rate of catalyzed char were fitted with several kinetic models, among which, random pore model was adopted as the best model. Based on obtained gasification rate constant and using the Arrhenius plot, activation energy of 5 wt% Na loaded char was calculated as 151.46 kJ/mol which was 53 kJ/mol lower than that of un-catalyzed char.
    Matched MeSH terms: Alkalies/pharmacology*
  10. Mazlee MTF, Heidelberg T, Ariffin A, Zain SM
    Carbohydr Res, 2023 Oct;532:108923.
    PMID: 37598565 DOI: 10.1016/j.carres.2023.108923
    In the attempt to create a delivery system for an alkali-cation stimulated drug release, a computational study was conducted, aiming for the evaluation of synthetic access towards glycolipid crown ethers analogs and their potential for coordination-induced changes of packing constraints for molecular assemblies. The results disfavor amide-linkages for the creation of macrocycles around the inter-glycosidic bond of a disaccharide. Conformational changes upon cation coordination of the macrocycle decrease the intersection area for easily accessible macrocycles based on lactose. This leads to shrinking intersection areas upon alkali complexation. Maltose-based analogs, on the other hand, exhibited the targeted increase of the glycolipid intersection area and, hence, may be considered as a promising resource.
    Matched MeSH terms: Alkalies
  11. Wan Saidatul Syida, W.K., Normah, I., Noriham, A., Mohd Yusuf, M.
    MyJurnal
    Processing of soybeans to other products and consumption of soy products is increasing worldwide mainly due to acclaimed health benefits. Processing can alter soybean sensory appeal, nutritive value and potentially affect consumer health. Rhizopus oligosporus was used to ferment soybean for 3 days. The tempeh flour (TF) was produced form tempeh while defatted tempeh flour (DTF) was then produced from TF by immersing in hexane solvent while soy protein isolate (SPI) was prepared from DTF by using alkali and acid followed by neutralization treatment. In this study, nutritional properties and amino acid content of tempeh, TF, DTF and SPI were determined. Therefore, the objective of this study is was to evaluate the effect of each treatment on the chemical composition and amino acid content for all the samples. The results showed that the nutritional properties (total ash, moisture, crude fat, total carbohydrate and crude fibre) were reduced significantly (p < 0.05) except for protein content. Protein content was significantly (p < 0.05) increased by 50.5% in SPI. For amino acid content, the results obtained showed that SPI contain highest amount of essential and non-essential amino acid followed by DTF, Tempeh and TF. Glutamic acid was found to be the highest amino acid component in all samples. The evaluation from the results showed that SPI can be considered as potential functional food ingredients.
    Matched MeSH terms: Alkalies
  12. Fouad H, Kian LK, Jawaid M, Alotaibi MD, Alothman OY, Hashem M
    Polymers (Basel), 2020 Dec 07;12(12).
    PMID: 33297332 DOI: 10.3390/polym12122926
    Conocarpus fiber is an abundantly available and sustainable cellulosic biomass. With its richness in cellulose content, it is potentially used for manufacturing microcrystalline cellulose (MCC), a cellulose derivative product with versatile industrial applications. In this work, different samples of bleached fiber (CPBLH), alkali-treated fiber (CPAKL), and acid-treated fiber (CPMCC) were produced from Conocarpus through integrated chemical process of bleaching, alkaline cooking, and acid hydrolysis, respectively. Characterizations of samples were carried out with Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), Fourier Transform Infrared-Ray (FTIR), X-ray Diffraction (XRD), Thermogravimetric (TGA), and Differential Scanning Calorimetry (DSC). From morphology study, the bundle fiber feature of CPBLH disintegrated into micro-size fibrils of CPMCC, showing the amorphous compounds were substantially removed through chemical depolymerization. Meanwhile, the elemental analysis also proved that the traces of impurities such as cations and anions were successfully eliminated from CPMCC. The CPMCC also gave a considerably high yield of 27%, which endowed it with great sustainability in acting as alternative biomass for MCC production. Physicochemical analysis revealed the existence of crystalline cellulose domain in CPMCC had contributed it 75.7% crystallinity. In thermal analysis, CPMCC had stable decomposition behavior comparing to CPBLH and CPAKL fibers. Therefore, Conocarpus fiber could be a promising candidate for extracting MCC with excellent properties in the future.
    Matched MeSH terms: Alkalies
  13. Vijay R, Lenin Singaravelu D, Vinod A, Sanjay MR, Siengchin S, Jawaid M, et al.
    Int J Biol Macromol, 2019 Mar 15;125:99-108.
    PMID: 30528990 DOI: 10.1016/j.ijbiomac.2018.12.056
    The aim of this study is to investigate natural cellulosic fibers extracted from Tridax procumbens plants. The obtained fibers were alkali treated for their effective usage as reinforcement in composites. The physical, chemical, crystallinity, thermal, wettability and surface characteristics were analyzed for raw, and alkali treated Tridax procumbens fibers (TPFs). The test results conclude that there was an increase in cellulose content with a reduction in hemicellulose, lignin, and wax upon alkali treatment. This enhanced the thermal stability, tensile strength, crystallinity, and surface roughness characteristics. The contact angle was also lesser for treated TPFs which prove its better wettability with the liquid phase. The Weibull distribution analysis was adopted for the analysis of the fiber diameter and tensile properties. Thus the considerable improvement in the properties of alkali treated TPFs would be worth for developing high-performance polymer composites.
    Matched MeSH terms: Alkalies/chemistry*
  14. Lakshmanan S, Murugesan T
    Water Sci Technol, 2017 Jul;76(1-2):87-94.
    PMID: 28708613 DOI: 10.2166/wst.2017.182
    Chlorates are present in the brine stream purged from chlor-alkali plants. Tests were conducted using activated carbon from coconut shell, coal or palm kernel shell to adsorb chlorate. The results show varying levels of adsorption with reduction ranging between 1.3 g/L and 1.8 g/L. This was higher than the chlorate generation rate of that plant, recorded at 1.22 g/L, indicating that chlorate can be adequately removed by adsorption using activated carbon. Coconut based activated carbon exhibited the best adsorption of chlorate of the three types of activated carbon tested. Introducing an adsorption step prior to purging of the brine will be able to reduce chlorate content in the brine stream. The best location for introducing the adsorption step was identified to be after dechlorination of the brine and before resaturation. Introduction of such an adsorption step will enable complete recovery of the brine and prevent brine purging, which in turn will result in less release of chlorides and chlorates to the environment.
    Matched MeSH terms: Alkalies/analysis
  15. Letchumanan I, Md Arshad MK, Gopinath SCB, Rajapaksha RDAA, Balakrishnan SR
    Sci Rep, 2020 Apr 22;10(1):6783.
    PMID: 32321969 DOI: 10.1038/s41598-020-63831-w
    Field of generating a surface thin film is emerging broadly in sensing applications to obtain the quick and fast results by forming the high-performance sensors. Incorporation of thin film technologies in sensor development for the better sensing could be a promising way to attain the current requirements. This work predominantly delineates the fabrication of the dielectric sensor using two different sensing materials (Gold and Aluminium). Conventional photolithography was carried out using silicon as a base material and the photo mask of the dielectric sensor was designed by AutoCAD software. The physical characterization of the fabricated sensor was done by Scanning Electron Microscope, Atomic Force Microscope, High Power Microscope and 3D-nano profiler. The electrical characterization was performed using Keithley 6487 picoammeter with a linear sweep voltage of 0 to 2 V at 0.01 V step voltage. By pH scouting, I-V measurements on the bare sensor were carried out, whereby the gold electrodes conducts a least current than aluminium dielectrodes. Comparative analysis with pH scouting reveals that gold electrode is suitable under varied ionic strengths and background electrolytes, whereas aluminium electrodes were affected by the extreme acid (pH 1) and alkali (pH 12) solutions.
    Matched MeSH terms: Alkalies
  16. Ang TN, Ngoh GC, Chua AS
    Bioresour Technol, 2013 May;135:116-9.
    PMID: 23138072 DOI: 10.1016/j.biortech.2012.09.045
    The performance of alkalis (NaOH and Ca(OH)2) and acids (H2SO4, HCl, H3PO4, CH3COOH, and HNO3) in the pretreatment of rice husk was screened, and a suitable reagent was assessed for subsequent optimization using response surface methodology. From the assessment, HCl that hydrolysed rice husk well was optimized with three parameters (HCl loading, pretreatment duration, and temperature) using Box-Behnken Design. The optimized condition (0.5% (w/v) HCl loading, 125 °C, 1.5 h) is relatively mild, and resulted in ~22.3mg TRS/ml hydrolysate. The reduced model developed has good predictability, where the predicted and experimental results differ by only 2%. The comprehensive structural characterization studies that involved FT-IR, XRD, SEM, and BET surface area determination showed that the pretreated rice husk consisted mainly of cellulose and lignin. Compared to untreated rice husk, pretreated rice husk possessed increased pore size and pore volume, which are expected to be beneficial for fungal growth during fermentation.
    Matched MeSH terms: Alkalies/pharmacology
  17. Faris MA, Abdullah MMAB, Muniandy R, Abu Hashim MF, Błoch K, Jeż B, et al.
    Materials (Basel), 2021 Mar 09;14(5).
    PMID: 33803313 DOI: 10.3390/ma14051310
    Geopolymer concrete has the potential to replace ordinary Portland cement which can reduce carbon dioxide emission to the environment. The addition of different amounts of steel fibers, as well as different types of end-shape fibers, could alter the performance of geopolymer concrete. The source of aluminosilicate (fly ash) used in the production of geopolymer concrete may lead to a different result. This study focuses on the comparison between Malaysian fly ash geopolymer concrete with the addition of hooked steel fibers and geopolymer concrete with the addition of straight-end steel fibers to the physical and mechanical properties. Malaysian fly ash was first characterized by X-ray fluorescence (XRF) to identify the chemical composition. The sample of steel fiber reinforced geopolymer concrete was produced by mixing fly ash, alkali activators, aggregates, and specific amounts of hook or straight steel fibers. The steel fibers addition for both types of fibers are 0%, 0.5%, 1.0%, 1.5%, and 2.0% by volume percentage. The samples were cured at room temperature. The physical properties (slump, density, and water absorption) of reinforced geopolymer concrete were studied. Meanwhile, a mechanical performance which is compressive, as well as the flexural strength was studied. The results show that the pattern in physical properties of geopolymer concrete for both types of fibers addition is almost similar where the slump is decreased with density and water absorption is increased with the increasing amount of fibers addition. However, the addition of hook steel fiber to the geopolymer concrete produced a lower slump than the addition of straight steel fibers. Meanwhile, the addition of hook steel fiber to the geopolymer concrete shows a higher density and water absorption compared to the sample with the addition of straight steel fibers. However, the difference is not significant. Besides, samples with the addition of hook steel fibers give better performance for compressive and flexural strength compared to the samples with the addition of straight steel fibers where the highest is at 1.0% of fibers addition.
    Matched MeSH terms: Alkalies
  18. Ahmad Zakuan Ahmad Azmi, Mohd. Saaid, Irawan, Sonny
    MyJurnal
    The present project investigated the potential of utilizing corncobs and sugar cane waste as viscosivier in drilling fluid. For this purpose, the synthetic-based drilling fluid, Sarapar 147, was used as the base fluid. Both the materials were subjected to pre-treatment of drying, dehumidifying, grinding and sieving process prior to rheological tests. The rheological tests were conducted in accordance with the API 13B specifications to measure mud density, plastic viscosity, yield point, 10-second and 10-minute gel strength. The study found that plastic viscosity and yield point had a direct relationship with the amount of materials added. To drill fluid additive with corn cobs, the density, plastic viscosity and yield point were increased when the amount of additives were increased. Based on these experiments, both additives were found to have the potential to be used as additive in drilling fluid. In particular, they were able to improve its rheological properties by increasing the density, plastic viscosity and yield point. The suitable concentration for the corn cobs and sugar cane is 6.45 lb/bbl and 9.43 lb/bbl, respectively.
    Matched MeSH terms: Alkalies
  19. Azman NF, Megat Mohd Noor MJ, Md Akhir FN, Ang MY, Hashim H, Othman N, et al.
    Bioresour Technol, 2019 May;279:174-180.
    PMID: 30721818 DOI: 10.1016/j.biortech.2019.01.122
    Previous studies on screening of lignin-degrading bacteria mainly focused on the ligninolytic ability of the isolated bacteria for the utilization of lignin monomers. In this study, we focused on the depolymerization of alkali lignin to prove the ability of the isolated thermophilic bacterial strains to utilize and depolymerize more than a monomer of alkali lignin within 7 days of incubation. Indigenous thermophilic bacterial isolates from the palm oil plantation were used to evaluate the depolymerization and utilization of alkali lignin. The confirmation of the bacterium-mediated depolymerization of oil palm empty fruit bunch was achieved through the removal of silica bodies, as observed with scanning electron microscopy. Stenotrophomonas sp. S2 and Bacillus subtilis S11Y were able to reduce approximately 50% and 20% of alkali lignin at 7 days of incubation without the requirement for additional carbon sources.
    Matched MeSH terms: Alkalies
  20. Tablit S, Krache R, Amroune S, Jawaid M, Hachaichi A, Ismail AS, et al.
    J Mech Behav Biomed Mater, 2024 Apr;152:106438.
    PMID: 38359736 DOI: 10.1016/j.jmbbm.2024.106438
    Arundo donax L. is investigated in this study as a suitable reinforcing agent for PLA/PP waste blend 3D printing filament. To improve the compatibility of the fibre and polymer, the Arundo fibre was chemically modified using alkali and silane treatment. Untreated and treated fibres were extruded with Polymer blends before being 3D printed. Effect of chemical treatment on thermal, mechanical, and morphological properties of the composites was investigated. The tensile, Izod impact, and water absorption of the 3D printed specimens were also tested. The Alkali treated (ALK) and combination of alkali and silane treatment (SLN) composites displayed good results. Tensile strength and modulus of the materials increased, as well as their maintained stability in the Izod impact test, demonstrating that the incorporation of ArF did not result in a loss in performance. SEM examination supported these findings by confirming the creation of beneficial interfacial contacts between the matrix and fibre components, as demonstrated by the lack of void between the matrix and the fibre surface. Furthermore, the alkali treatment of the ArF resulted in a considerable reduction in water absorption inside the biocomposite, with a 64% reduction seen in ALK composite comparison to the untreated composite (Un). After the 43-day assessment period.
    Matched MeSH terms: Alkalies*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links