Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Abdulhameed AS, Hapiz A, Musa SA, Kashi E, Wu R, ALOthman ZA, et al.
    Int J Biol Macromol, 2024 Jan;256(Pt 2):128463.
    PMID: 38029908 DOI: 10.1016/j.ijbiomac.2023.128463
    In this study, a new biocomposite magnetic adsorbent (magnetic glyoxal-chitosan Schiff base/organically modified montmorillonite (MCTS-GOX/OMMT)) was synthesized and employed for the adsorption of reactive blue 19 dye (RB19) from aqueous environment. The physicochemical properties of the MCTS-GOX/OMMT were confirmed by using various characterization techniques such as BET, XRD, FTIR, SEM-EDX, VSM, and pHpzc. The adsorption key variables were statistically optimized via Box-Behnken design (BBD) And accordingly the best operational conditions to achieve maximum RB19 removal were recorded at MCTS-GOX/OMMT dosage = 0.1 g/0.1 L, solution pH = 4, and working temperature = 25 °C. The adsorption process for RB19 appeared to follow the pseudo-second-order kinetic and the Langmuir isotherm models, according to the findings of the adsorption kinetics and equilibrium investigations. The maximum adsorption capacity of the MCTS-GOX/OMMT towards RB19 was 122.3 mg/g, demonstrating its preferable adsorption capability. The successful development of this novel magnetic bioadsorbent with excellent adsorption ability towards organic dyes and efficient separation ability opens possibilities for its practical application in wastewater treatment and dye removal processes.
    Matched MeSH terms: Anthraquinones*
  2. Abu N, Ali NM, Ho WY, Yeap SK, Aziz MY, Alitheen NB
    Anticancer Agents Med Chem, 2014 Jun;14(5):750-5.
    PMID: 24164045
    The Noni fruit, or scientifically known as Morinda citrifolia can be found in various parts of the world, especially in the pacific region. It is a small evergreen bushy-like tree originated from the Rubiaceae family. The plant has been used by polynesians as a medicinal herb for more than 2000 years. A substantial amount of phytochemicals can be found in the roots of this plant. Among all, damnacanthal has been found to be the most interesting, versatile and potent compound. Damnacanthal or chemically known as,3- hydroxy-1-methoxyanthraquinone-2-caboxaldehyde (C16H10O5), appears as pale yellow crystals with a melting point of 210-211 °C. This compound is of particular interest due to its striking pharmacological properties. Damnacanthal was shown to inhibit the oncogene Ras, p56lck tyrosine kinase, NF-KB pathway and induce apoptosis in vitro. This review aims to discuss the biological properties of damnacanthal, specifically on its anti-cancer activity that has been reported.
    Matched MeSH terms: Anthraquinones/pharmacology; Anthraquinones/therapeutic use*; Anthraquinones/chemistry
  3. Aziz MY, Abu N, Yeap SK, Ho WY, Omar AR, Ismail NH, et al.
    Molecules, 2016 Sep 14;21(9).
    PMID: 27649120 DOI: 10.3390/molecules21091228
    Despite progressive research being done on drug therapy to treat breast cancer, the number of patients succumbing to the disease is still a major issue. Combinatorial treatment using different drugs and herbs to treat cancer patients is of major interest in scientists nowadays. Doxorubicin is one of the most used drugs to treat breast cancer patients. The combination of doxorubicin to other drugs such as tamoxifen has been reported. Nevertheless, the combination of doxorubicin with a natural product-derived agent has not been studied yet. Morinda citrifolia has always been sought out for its remarkable remedies. Damnacanthal, an anthraquinone that can be extracted from the roots of Morinda citrifolia is a promising compound that possesses a variety of biological properties. This study aimed to study the therapeutic effects of damnacanthal in combination with doxorubicin in breast cancer cells. Collectively, the combination of both these molecules enhanced the efficacy of induced cell death in MCF-7 as evidenced by the MTT assay, cell cycle, annexin V and expression of apoptosis-related genes and proteins. The effectiveness of doxorubicin as an anti-cancer drug was increased upon addition of damnacanthal. These results could provide a promising approach to treat breast cancer patients.
    Matched MeSH terms: Anthraquinones/pharmacokinetics; Anthraquinones/chemistry
  4. Abu N, Zamberi NR, Yeap SK, Nordin N, Mohamad NE, Romli MF, et al.
    BMC Complement Altern Med, 2018 Jan 27;18(1):31.
    PMID: 29374471 DOI: 10.1186/s12906-018-2102-3
    BACKGROUND: Morinda citrifolia L. that was reported with immunomodulating and cytotoxic effects has been traditionally used to treat multiple illnesses including cancer. An anthraquinone derived from fruits of Morinda citrifolia L., nordamnacanthal, is a promising agent possessing several in vitro biological activities. However, the in vivo anti-tumor effects and the safety profile of nordamnacanthal are yet to be evaluated.

    METHODS: In vitro cytotoxicity of nordamnacanthal was tested using MTT, cell cycle and Annexin V/PI assays on human MCF-7 and MDA-MB231 breast cancer cells. Mice were orally fed with nordamnacanthal daily for 28 days for oral subchronic toxicity study. Then, the in vivo anti-tumor effect was evaluated on 4T1 murine cancer cells-challenged mice. Changes of tumor size and immune parameters were evaluated on the untreated and nordamnacanthal treated mice.

    RESULTS: Nordamnacanthal was found to possess cytotoxic effects on MDA-MB231, MCF-7 and 4T1 cells in vitro. Moreover, based on the cell cycle and Annexin V results, nordamnacanthal managed to induce cell death in both MDA-MB231 and MCF-7 cells. Additionally, no mortality, signs of toxicity and changes of serum liver profile were observed in nordamnacanthal treated mice in the subchronic toxicity study. Furthermore, 50 mg/kg body weight of nordamncanthal successfully delayed the progression of 4T1 tumors in Balb/C mice after 28 days of treatment. Treatment with nordamnacanthal was also able to increase tumor immunity as evidenced by the immunophenotyping of the spleen and YAC-1 cytotoxicity assays.

    CONCLUSION: Nordamnacanthal managed to inhibit the growth and induce cell death in MDA-MB231 and MCF-7 cell lines in vitro and cease the tumor progression of 4T1 cells in vivo. Overall, nordamnacanthal holds interesting anti-cancer properties that can be further explored.

    Matched MeSH terms: Anthraquinones/pharmacology*; Anthraquinones/toxicity; Anthraquinones/chemistry
  5. Subramani T, Yeap SK, Ho WY, Ho CL, Osman CP, Ismail NH, et al.
    Oncol Lett, 2015 Jan;9(1):335-340.
    PMID: 25435988
    Tamoxifen (TAM) is the mainline drug treatment for breast cancer, despite its side effects and the development of resistance. As an alternative approach, in the present study a novel combination therapy was established through combining TAM with nordamnacanthal (NDAM) in order to investigate the additive effect of these drugs in MCF-7 human breast cancer cells. A significant dose-dependent reduction in cell viability and an increase in apoptosis were observed in the MCF-7 cells cotreated with TAM and NDAM compared with the untreated control cells or the cells treated with TAM and NDAM alone (P<0.05). The cytotoxic influence of the combination of TAM and NDAM was found to be two-fold that of the individual agents. Annexin V/propidium iodide double-staining revealed the typical nuclear features of apoptosis. Furthermore, an increase in the proportion of apoptotic, Annexin V-positive cells was observed with the combination therapy. Moreover, this apoptotic induction was associated with a collapse of the mitochondrial membrane potential and the generation of reactive oxygen species. To the best of our knowledge, the findings of the present study are the first to suggest that combining TAM with NDAM may be a potential combination therapy for the treatment of breast cancer and may have the potential to minimize or eliminate the side effects associated with high doses of TAM.
    Matched MeSH terms: Anthraquinones
  6. Aziz MY, Omar AR, Subramani T, Yeap SK, Ho WY, Ismail NH, et al.
    Oncol Lett, 2014 May;7(5):1479-1484.
    PMID: 24765160
    Damnacanthal, an anthraquinone compound, is isolated from the roots of Morinda citrifolia L. (noni), which has been used for traditional therapy in several chronic diseases, including cancer. Although noni has long been consumed in Asian and Polynesian countries, the molecular mechanisms by which it exerts several benefits are starting to emerge. In the present study, the effect of damnacanthal on MCF-7 cell growth regulation was investigated. Treatment of MCF-7 cells with damnacanthal for 72 h indicated an antiproliferative activity. The MTT method confirmed that damnacanthal inhibited the growth of MCF-7 cells at the concentration of 8.2 μg/ml for 72 h. In addition, the drug was found to induce cell cycle arrest at the G1 checkpoint in MCF-7 cells by cell cycle analysis. Damnacanthal induced apoptosis, determined by Annexin V-fluorescein isothiocyanate/propidium iodide (PI) dual-labeling, acridine-orange/PI dyeing and caspase-7 expression. Furthermore, damnacanthal-mediated apoptosis involves the sustained activation of p21, leading to the transcription of p53 and the Bax gene. Overall, the present study provided significant evidence demonstrating that p53-mediated damnacanthal induced apoptosis through the activation of p21 and caspase-7.
    Matched MeSH terms: Anthraquinones
  7. Abu N, Akhtar MN, Ho WY, Yeap SK, Alitheen NB
    Molecules, 2013 Aug 27;18(9):10367-77.
    PMID: 23985955 DOI: 10.3390/molecules180910367
    Breast cancer is becoming more prominent in women today. As of now, there are no effective treatments in treating metastatic breast cancer. We have tested the cytotoxic and anti-migration effects of BHAQ, a synthesized anthraquinone, on two breast cancer cell lines, MCF-7 and MDA-MB231. Anthraquinones are an interesting class of molecules that display a wide spectrum of biological applications, including anticancer properties. Cellular inhibition was tested through a MTT assay, double acridine orange/propidium iodide staining and FACS cell cycle analysis. Inhibition of migration was tested by the wound healing method, and migration through a Boyden chamber. BHAQ was cytotoxic towards both cell lines in a dose dependent and possibly cell-dependent manner. Additionally, BHAQ also inhibited the migration of the highly metastatic MDA-MB231 cell line.
    Matched MeSH terms: Anthraquinones/chemical synthesis; Anthraquinones/pharmacology*
  8. Akhtar MN, Zareen S, Yeap SK, Ho WY, Lo KM, Hasan A, et al.
    Molecules, 2013 Aug 20;18(8):10042-55.
    PMID: 23966087 DOI: 10.3390/molecules180810042
    Naturally occurring anthraquinones, damnacanthal (1) and nordamnacanthal (2) were synthesized with modified reaction steps and investigated for their cytotoxicity against the MCF-7 and K-562 cancer cell lines, respectively. Intermediate analogues 2-bromomethyl-1,3-dimethoxyanthraquinone (5, IC50 = 5.70 ± 0.21 and 8.50 ± 1.18 mg/mL), 2-hydroxymethyl-1,3-dimethoxyanthraquinone (6, IC50 = 12.10 ± 0.14 and 14.00 ± 2.13), 2-formyl-1,3-dimethoxyantharquinone (7, IC50 = 13.10 ± 1.02 and 14.80 ± 0.74), 1,3-dimethoxy-2-methylanthraquinone (4, IC50 = 9.40 ± 3.51 and 28.40 ± 2.33), and 1,3-dihydroxy-2-methylanthraquinone (3, IC50 = 25.60 ± 0.42 and 28.40 ± 0.79) also exhibited moderate cytotoxicity against MCF-7 and K-562 cancer cell lines, respectively. Other structurally related compounds like 1,3-dihydroxyanthraquinone (13a, IC50 = 19.70 ± 0.35 and 14.50 ± 1.28), 1,3-dimethoxyanthraquinone (13b, IC50 = 6.50 ± 0.66 and 5.90 ± 0.95) were also showed good cytotoxicity. The target compound damnacanthal (1) was found to be the most cytotoxic against the MCF-7 and K-562 cancer cell lines, with IC50 values of 3.80 ± 0.57 and 5.50 ± 1.26, respectively. The structures of all compounds were elucidated with the help of detailed spectroscopic techniques.
    Matched MeSH terms: Anthraquinones/pharmacology; Anthraquinones/chemistry*
  9. Adnan LA, Sathishkumar P, Yusoff AR, Hadibarata T, Ameen F
    Bioprocess Biosyst Eng, 2017 Jan;40(1):85-97.
    PMID: 27663440 DOI: 10.1007/s00449-016-1677-7
    In this study, a newly isolated ascomycete fungus Trichoderma lixii F21 was explored to bioremediate the polar [Alizarin Red S (ARS)] and non-polar [Quinizarine Green SS (QGSS)] anthraquinone dyes. The bioremediation of ARS and QGSS by T. lixii F21 was found to be 77.78 and 98.31 %, respectively, via biosorption and enzymatic processes within 7 days of incubation. The maximum biosorption (ARS = 33.7 % and QGSS = 74.7 %) and enzymatic biodegradation (ARS = 44.1 % and QGSS = 23.6 %) were observed at pH 4 and 27 °C in the presence of glucose and yeast extract. The laccase and catechol 1,2-dioxygenase produced by T. lixii F21 were involved in the molecular conversions of ARS and QGSS to phenolic and carboxylic acid compounds, without the formation of toxic aromatic amines. This study suggests that T. lixii F21 may be a good candidate for the bioremediation of industrial effluents contaminated with anthraquinone dyes.
    Matched MeSH terms: Anthraquinones/metabolism*
  10. Krishna LS, Yuzir A, Yuvaraja G, Ashokkumar V
    Int J Phytoremediation, 2017 May 04;19(5):431-438.
    PMID: 27739901 DOI: 10.1080/15226514.2016.1244161
    The feasibility for the removal of Acid Blue25 (AB25) by Bengal gram fruit shell (BGFS), an agricultural by-product, has been investigated as an alternative for high-cost adsorbents. The impact of various experimental parameters such as dose, different dye concentration, solution pH, and temperature on the removal of Acid Blue25 (AB25) has been studied under the batch mode of operation. pH is a significant impact on the sorption of AB25 onto BGFS. The maximum removal of AB25 was achieved at a pH of 2 (83.84%). The optimum dose of biosorbent was selected as 200 mg for the removal of AB25 onto BGFS. Kinetic studies reveal that equilibrium reached within 180 minutes. Biosorption kinetics has been described by Lagergren equation and biosorption isotherms by classical Langmuir and Freundlich models. Equilibrium data were found to fit well with the Langmuir and Freundlich models, and the maximum monolayer biosorption capacity was 29.41 mg g(-1) of AB25 onto BGFS. The kinetic studies indicated that the pseudo-second-order (PSO) model fitted the experimental data well. In addition, thermodynamic parameters have been calculated. The biosorption process was spontaneous and exothermic in nature with negative values of ΔG° (-1.6031 to -0.1089 kJ mol(-1)) and ΔH° (-16.7920 kJ mol(-1)). The negative ΔG° indicates the feasibility of physical biosorption process. The results indicate that BGFS could be used as an eco-friendly and cost-effective biosorbent for the removal of AB25 from aqueous solution.
    Matched MeSH terms: Anthraquinones/metabolism*
  11. Paudel P, Seong SH, Fauzi FM, Bender A, Jung HA, Choi JS
    ACS Omega, 2020 Apr 07;5(13):7705-7715.
    PMID: 32280914 DOI: 10.1021/acsomega.0c00684
    The present study examines the effect of human monoamine oxidase active anthraquinones emodin, alaternin (=7-hydroxyemodin), aloe-emodin, and questin from Cassia obtusifolia Linn seeds in modulating human dopamine (hD1R, hD3R, and hD4R), serotonin (h5-HT1AR), and vasopressin (hV1AR) receptors that were predicted as prime targets from proteocheminformatics modeling via in vitro cell-based functional assays, and explores the possible mechanisms of action via in silico modeling. Emodin and alaternin showed a concentration-dependent agonist effect on hD3R with EC50 values of 21.85 ± 2.66 and 56.85 ± 4.59 μM, respectively. On hV1AR, emodin and alaternin showed an antagonist effect with IC50 values of 10.25 ± 1.97 and 11.51 ± 1.08 μM, respectively. Interestingly, questin and aloe-emodin did not have any observable effect on hV1AR. Only alaternin was effective in antagonizing h5-HT1AR (IC50: 84.23 ± 4.12 μM). In silico studies revealed that a hydroxyl group at C1, C3, and C8 and a methyl group at C6 of anthraquinone structure are essential for hD3R agonist and hV1AR antagonist effects, as well as for the H-bond interaction of 1-OH group with Ser192 at a proximity of 2.0 Å. Thus, based on in silico and in vitro results, hV1AR, hD3R, and h5-HT1AR appear to be prime targets of the tested anthraquinones.
    Matched MeSH terms: Anthraquinones
  12. Primus PS, Wu CH, Kao CL, Choo YM
    Nat Prod Res, 2024 Apr;38(8):1406-1413.
    PMID: 36416441 DOI: 10.1080/14786419.2022.2147932
    Two new bisanthraquinones, glabraquinone A and B (1-2) were isolated from the root of Prismatomeris glabra (Korth.) Valeton. In addition to the new glabraquinones, six known anthraquinones, that is, 1-hydroxy-2-methoxy-6-methylanthraquinone (3), 1,2-dimethoxy-7-methylanthraquinone (4), lucidin (5), nordamnacanthal (6), damnacanthal (7) and 2-carboxaldehyde-3-hydroxyanthraquinone (8)) and an aromatic compound, that is, catechol diethyl ether (9) were isolated and characterized in this study. Compounds 1, 4 and 9 showed mild activity, reducing N2A cell viability to 77%, 82% and 77%, respectively, in anti-neuroblastoma assay.
    Matched MeSH terms: Anthraquinones/pharmacology
  13. Watroly MN, Sekar M, Fuloria S, Gan SH, Jeyabalan S, Wu YS, et al.
    Drug Des Devel Ther, 2021;15:4527-4549.
    PMID: 34764636 DOI: 10.2147/DDDT.S338548
    Anthraquinones (AQs) are found in a variety of consumer products, including foods, nutritional supplements, drugs, and traditional medicines, and have a wide range of pharmacological actions. Rubiadin, a 1,3-dihydroxy-2-methyl anthraquinone, primarily originates from Rubia cordifolia Linn (Rubiaceae). It was first discovered in 1981 and has been reported for many biological activities. However, no review has been reported so far to create awareness about this molecule and its role in future drug discovery. Therefore, the present review aimed to provide comprehensive evidence of Rubiadin's phytochemistry, biosynthesis, physicochemical properties, biological properties and therapeutic potential. Relevant literature was gathered from numerous scientific databases including PubMed, ScienceDirect, Scopus and Google Scholar between 1981 and up-to-date. The distribution of Rubiadin in numerous medicinal plants, as well as its method of isolation, synthesis, characterisation, physiochemical properties and possible biosynthesis pathways, was extensively covered in this review. Following a rigorous screening and tabulating, a thorough description of Rubiadin's biological properties was gathered, which were based on scientific evidences. Rubiadin fits all five of Lipinski's rule for drug-likeness properties. Then, the in depth physiochemical characteristics of Rubiadin were investigated. The simple technique for Rubiadin's isolation from R. cordifolia and the procedure of synthesis was described. Rubiadin is also biosynthesized via the polyketide and chorismate/o-succinylbenzoic acid pathways. Rubiadin is a powerful molecule with anticancer, antiosteoporotic, hepatoprotective, neuroprotective, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antimalarial, antifungal, and antiviral properties. The mechanism of action for the majority of the pharmacological actions reported, however, is unknown. In addition to this review, an in silico molecular docking study was performed against proteins with PDB IDs: 3AOX, 6OLX, 6OSP, and 6SDC to support the anticancer properties of Rubiadin. The toxicity profile, pharmacokinetics and possible structural modifications were also described. Rubiadin was also proven to have the highest binding affinity to the targeted proteins in an in silico study; thus, we believe it may be a potential anticancer molecule. In order to present Rubiadin as a novel candidate for future therapeutic development, advanced studies on preclinical, clinical trials, bioavailability, permeability and administration of safe doses are necessary.
    Matched MeSH terms: Anthraquinones/isolation & purification; Anthraquinones/pharmacology*; Anthraquinones/chemistry
  14. Yeong YL, Pang SF, Putranto A, Gimbun J
    Nat Prod Res, 2021 Feb 04.
    PMID: 33538194 DOI: 10.1080/14786419.2021.1881096
    This paper investigates the optimum processing conditions of microwave assisted extraction (MAE) of anthraquinone (aloe emodin, AE) and flavonoids (kaempferol 3-gentiobioside, K3G and kaempferol, KA) from Senna alata (L.) Roxb. The kinetic study indicates that MAE showed a greater extraction rate, compared to ultrasonic-assisted and maceration, due to the enhanced power which altered the leaf microstructures. The optimisation was undertaken using one-factor-at-a-time, two-level factorial design and central composite design were used to maximise the yield of the target compounds. The optimum yield of K3G (4.27 mg/g DW), KA (8.54 mg/g DW) and AE (0.86 mg/g DW) was obtained at 90.5% ethanol, microwave power of 18.6 W/mL with a desirability of 0.82. In addition, the yield of K3G and KA is correlated positively with the antioxidant activity.
    Matched MeSH terms: Anthraquinones
  15. Latifah SY, Gopalsamy B, Abdul Rahim R, Manaf Ali A, Haji Lajis N
    Molecules, 2021 Mar 12;26(6).
    PMID: 33808969 DOI: 10.3390/molecules26061554
    BACKGROUND: This study reports on the cytotoxic properties of nordamnacanthal and damnacanthal, isolated from roots of Morinda elliptica on T-lymphoblastic leukaemia (CEM-SS) cell lines.

    METHODS: MTT assay, DNA fragmentation, ELISA and cell cycle analysis were carried out.

    RESULTS: Nordamnacanthal and damnacanthal at IC50 values of 1.7 μg/mL and10 μg/mL, respectively. At the molecular level, these compounds caused internucleosomal DNA cleavage producing multiple 180-200 bp fragments that are visible as a "ladder" on the agarose gel. This was due to the activation of the Mg2+/Ca2+-dependent endonuclease. The induction of apoptosis by nordamnacanthal was different from the one induced by damnacanthal, in a way that it occurs independently of ongoing transcription process. Nevertheless, in both cases, the process of dephosphorylation of protein phosphates 1 and 2A, the ongoing protein synthesis and the elevations of the cytosolic Ca2+ concentration were not needed for apoptosis to take place. Nordamnacanthal was found to have a cytotoxic effect by inducing apoptosis, while damnacanthal caused arrest at the G0/G1 phase of the cell cycle.

    CONCLUSION: Damnacanthal and nordamnacanthal have anticancer properties, and could act as potential treatment for T-lymphoblastic leukemia.

    Matched MeSH terms: Anthraquinones/isolation & purification; Anthraquinones/pharmacology*
  16. Amin, I.M., Sheikh Abdul Kadir, S.H., Isa, M.R., Rosdy. N.M.M.N.M., Hasani NAH
    JUMMEC, 2016;19(1):1-10.
    MyJurnal
    The positive response to tamoxifen in ERa-positive breast cancer patients is usually of a short duration as many
    of the patients eventually develop resistance. Our preliminary results show that aloe emodin extracted from
    the leaves of the Aloe barbadensis Miller demonstrated a cytotoxicity that is selective to ERa-positive breast
    cancer cells (MCF-7), but not to ERa-negative breast cancer cells (MDA-MB-231) and to the control cells (MCF-
    10A). The objective of this study was to test the hypothesis that aloe emodin may enhance the response of
    MCF-7 cells to treatment with tamoxifen. MCF-7 cells were treated with aloe emodin alone, tamoxifen alone
    or a combination of emodin and tamoxifen, at their respective IC50 concentrations and at different time points
    of 24 hours, 48 hours and 72 hours. The respective IC50s were the concentrations of aloe emodin and tamoxifen
    required to achieve 50% inhibition of the cells in the study. Cell viability and apoptosis were determined using
    trypan blue exclusion and DNA fragmentation assays, respectively. The involvement of RAS/MEKs/ERKs genes
    of MAPK signalling pathways with aloe emodin was determined using QuantiGene 2.0 Plex assay. Data was
    evaluated using the one-way ANOVA test. Our findings showed that aloe emodin enhanced the cytotoxicity of
    tamoxifen on MCF-7 cells through apoptosis by downregulation of MEK1/2 genes. Our research may provide a
    rational basis for further in vivo studies to verify the efficacy of a combination of aloe emodin and tamoxifen
    on the viability of ERa-positive-breast cancer cells.
    Matched MeSH terms: Anthraquinones
  17. Sulaiman SB, Keong TK, Cheng CH, Saim AB, Idrus RB
    Indian J Med Res, 2013 Jun;137(6):1093-101.
    PMID: 23852290
    Various materials have been used as scaffolds to suit different demands in tissue engineering. One of the most important criteria is that the scaffold must be biocompatible. This study was carried out to investigate the potential of HA or TCP/HA scaffold seeded with osteogenic induced sheep marrow cells (SMCs) for bone tissue engineering.
    Matched MeSH terms: Anthraquinones
  18. Jolly JJ, Chin KY, Farhana MFN, Alias E, Chua KH, Hasan WNW, et al.
    Iran J Med Sci, 2018 Mar;43(2):208-213.
    PMID: 29749990
    Osteoblasts (OBs) and osteoclasts (OCs) are 2 major groups of bone cells. Their cell-to-cell interactions are important to ensure the continuity of the bone-remodeling process. Therefore, the present study was carried out to optimize an OB/OC co-culture system utilizing the human OB cell line hFOB 1.19 and OCs extracted from peripheral blood mononuclear cells (PBMNCs). It was a 2-step procedure, involving the optimization of the OB culture and the co-culture of the OBs with PBMNCs at an optimum ratio. Firstly, pre-OBs were cultured to 90% confluency and the time required for differentiation was determined. OB differentiation was determined using the van Gieson staining to detect the presence of collagen and Alizarin Red for calcium. Secondly, OBs and OCs were co-cultured at the ratios of 1 OC: 1 OB, 1 OC: 4 OBs, 2 OCs: 1 OB, and 1 OC: 2 OBs. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect the differentiation of the OCs. The results showed that collagen was present on day 1, whereas calcium was detected as early as day 3. Based on the result of TRAP staining, 1 OC: 2 OBs was taken as the most appropriate ratio. No macrophage colony-stimulating factor and receptor activator of the nuclear factor-κB ligand were added because they were provided by the OBs. In conclusion, these optimization processes are vital as they ensure the exact time point and ratio of the OB/OC co-culture in order to produce a reliable and reproducible co-culture system.
    Matched MeSH terms: Anthraquinones
  19. Osman CP, Ismail NH, Ahmad R, Ahmat N, Awang K, Jaafar FM
    Molecules, 2010;15(10):7218-26.
    PMID: 20966871 DOI: 10.3390/molecules15107218
    Dichloromethane root extract of Rennellia elliptica Korth. showed strong inhibition of Plasmodium falciparum growth in vitro with an IC₅₀ value of 4.04 µg/mL. A phytochemical study of the dichloromethane root extract has led to the isolation and characterization of a new anthraquinone, 1,2-dimethoxy-6-methyl-9,10-anthraquinone (1), and ten known anthraquinones: 1-hydroxy-2-methoxy-6-methyl-9,10-anthraquinone (2), nordamnacanthal (3), 2-formyl-3-hydroxy-9,10-anthraquinone (4), damnacanthal (5), lucidin-ω-methyl ether (6), 3-hydroxy-2-methyl-9,10-anthraquinone (7), rubiadin (8), 3-hydroxy-2-methoxy-6-methyl-9,10-anthraquinone (9), rubiadin-1-methyl ether (10) and 3-hydroxy-2-hydroxymethyl-9,10-anthraquinone (11). Structural elucidation of all compounds was accomplished by modern spectroscopic methods, notably 1D and 2D NMR, IR, UV and HREIMS. The new anthraquinone 1, 2-formyl-3-hydroxy-9,10-anthraquinone (4) and 3-hydroxy-2-methyl-9,10-anthraquinone (7) possess strong antiplasmodial activity, with IC₅₀ values of 1.10, 0.63 and 0.34 µM, respectively.
    Matched MeSH terms: Anthraquinones/pharmacology*; Anthraquinones/chemistry
  20. Nor SM, Sukari MA, Azziz SS, Fah WC, Alimon H, Juhan SF
    Molecules, 2013 Jul 08;18(7):8046-62.
    PMID: 23884135 DOI: 10.3390/molecules18078046
    Aminoanthraquinones were successfully synthesized via two reaction steps. 1,4-Dihydroxyanthraquinone (1) was first subjected to methylation, reduction and acylation to give an excellent yield of anthracene-1,4-dione (3), 1,4-dimethoxyanthracene-9,10-dione (5) and 9,10-dioxo-9,10-dihydroanthracene-1,4-diyl diacetate (7). Treatment of 1, 3, 5 and 7 with BuNH2 in the presence of PhI(OAc)2 as catalyst produced seven aminoanthraquinone derivatives 1a, b, 3a, and 5a-d. Amination of 3 and 5 afforded three new aminoanthraquinones, namely 2-(butylamino)anthracene-1,4-dione (3a), 2-(butylamino)anthracene-9,10-dione (5a) and 2,3-(dibutylamino)anthracene-9,10-dione (5b). All newly synthesised aminoanthraquinones were examined for their cytotoxic activity against MCF-7 (estrogen receptor positive human breast) and Hep-G2 (human hepatocellular liver carcinoma) cancer cells using MTT assay. Aminoanthraquinones 3a, 5a and 5b exhibited strong cytotoxicity towards both cancer cell lines (IC50 1.1-13.0 µg/mL).
    Matched MeSH terms: Anthraquinones/chemical synthesis*; Anthraquinones/pharmacology*; Anthraquinones/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links