Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Vairappan CS, Daitoh M, Suzuki M, Abe T, Masuda M
    Phytochemistry, 2001 Sep;58(2):291-7.
    PMID: 11551553
    Two halogenated C15 acetogenins, named lembyne-A and lembyne-B, have been isolated from an unrecorded Laurencia species collected off the Malaysian waters. Their structures were deduced on the basis of spectroscopic evidence. Previously known elatol and iso-obtusol showed potent antibacterial activity against some marine bacteria.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism
  2. Harinantenaina L, Asakawa Y
    Chem Pharm Bull (Tokyo), 2004 Nov;52(11):1382-4.
    PMID: 15516770
    In the course of our chemotaxonomic study of the liverworts growing in Madagascar, mastigophoric acid methyl ester, along with eleven known compounds were isolated from Mastigophora diclados. Isolated metabolites showed that the Malagasy Mastigophora is more related to the samples from Borneo and Japan than to the Taiwanese or Malaysian ones. The biosynthesis of the herbertane type sesquiterpenoids from Mastigophora diclados is suggested to be similar to those found in the genus Herbertus. The herbertane-type sesquiterpenoids were screened for Staphylococcus aureus strain inhibition.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism
  3. Wahab HA, Yam WK, Samian MR, Najimudin N
    J Biomol Struct Dyn, 2008 Aug;26(1):131-46.
    PMID: 18533733
    Macrolides are a group of diverse class of naturally occurring and synthetic antibiotics made of macrocyclic-lactone ring carrying one or more sugar moieties linked to various atoms of the lactone ring. These macrolides selectively bind to a single high affinity site on the prokaryotic 50S ribosomal subunit, making them highly effective towards a wide range of bacterial pathogens. The understanding of binding between macrolides and ribosome serves a good basis in elucidating how they work at the molecular level and these findings would be important in rational drug design. Here, we report refinement of reconstructed PDB structure of erythromycin-ribosome system using molecular dynamics (MD) simulation. Interesting findings were observed in this refinement stage that could improve the understanding of the binding of erythromycin A (ERYA) onto the 50S subunit. The results showed ERYA was highly hydrated and water molecules were found to be important in bridging hydrogen bond at the binding pocket during the simulation time. ERYA binding to ribosome was also strengthened by hydrogen bond network and hydrophobic interactions between the antibiotic and the ribosome. Our MD simulation also demonstrated direct interaction of ERYA with Domains II, V and with C1773 (U1782EC), a residue in Domain IV that has yet been described of its role in ERYA binding. It is hoped that this refinement will serve as a starting model for a further enhancement of our understanding towards the binding of ERYA to ribosome.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism
  4. Saiful AJ, Mastura M, Zarizal S, Mazurah MI, Shuhaimi M, Ali AM
    J Basic Microbiol, 2008 Aug;48(4):245-51.
    PMID: 18720500 DOI: 10.1002/jobm.200700387
    Efflux-mediated resistance has been recognized as an important contributor of antibiotic resistance in bacteria, especially in methicillin-resistant Staphylococcus aureus (MRSA) isolates. This study was carried out to detect and analyze efflux genes (norA and mdeA) and active efflux activity in a collection of Malaysian MRSA and methicillin-sensitive S. aureus (MSSA) clinical isolates. Nineteen isolates including three ATCC S. aureus reference strains were subjected to PCR detection and DNA sequence analysis for norA and mdeA and active efflux detection using modified minimum inhibitory concentration (MIC) assay. From the 19 isolates, 18 isolates harboured the mdeA gene while 16 isolates contained norA gene. DNA sequence analysis reveals 98-100% correlation between the PCR product and the published DNA sequences in GenBank. In addition, 16 isolates exhibited active efflux activity using the ethidium bromide (EtBr)-reserpine combination MIC assay. To our knowledge, this is the first report on the detection of efflux genes and active efflux activity amongst Malaysian clinical isolates of MRSA/MSSA. Detection of active efflux activity may explain the previous report on efflux-mediated drug resistance profile amongst the local clinical isolates.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*
  5. Yam WK, Wahab HA
    J Chem Inf Model, 2009 Jun;49(6):1558-67.
    PMID: 19469526 DOI: 10.1021/ci8003495
    Erythromycin A and roxithromycin are clinically important macrolide antibiotics that selectively act on the bacterial 50S large ribosomal subunit to inhibit bacteria's protein elongation process by blocking the exit tunnel for the nascent peptide away from ribosome. The detailed molecular mechanism of macrolide binding is yet to be elucidated as it is currently known to the most general idea only. In this study, molecular dynamics (MD) simulation was employed to study their interaction at the molecular level, and the binding free energies for both systems were calculated using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. The calculated binding free energies for both systems were slightly overestimated compared to the experimental values, but individual energy terms enabled better understanding in the binding for both systems. Decomposition of results into residue basis was able to show the contribution of each residue at the binding pocket toward the binding affinity of macrolides and hence identified several key interacting residues that were in agreement with previous experimental and computational data. Results also indicated the contributions from van der Waals are more important and significant than electrostatic contribution in the binding of macrolides to the binding pocket. The findings from this study are expected to contribute to the understanding of a detailed mechanism of action in a quantitative matter and thus assisting in the development of a safer macrolide antibiotic.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*
  6. Zin NZ, Tasrip NA, Desa MN, Kqueen CY, Zakaria ZA, Hamat RA, et al.
    Trop Biomed, 2011 Dec;28(3):651-60.
    PMID: 22433896 MyJurnal
    This study was to assess the identification and antimicrobial activities of two actinomycete isolates. The two isolates designated as B8 and C2, were isolated from a patch of soil in the peripheral area of Universiti Putra Malaysia by streaking on starch casein agar after standard serial dilution procedures. Their antimicrobial activities were first evaluated against eight clinical laboratory strains namely Bacillus sp., Enterococcus sp., Escherichia coli, Klebsiella sp., Pseudomonas sp., Salmonella sp., Staphylococcus aureus, and Staphylococcus epidermidis by perpendicular streak method on Mueller Hinton and Tryptic Soy agar. In both media, a broad-spectrum antibacterial activity was observed for both isolates, with B8 against all the test bacteria and C2 against five of them (Bacillus sp., E. coli, Pseudomonas sp., S. aureus and S. epidermidis). Re-assessment against E. coli ATCC 25922 and S. aureus ATCC 25923 strains by similar method showed antibacterial activities by isolate B8 against both ATTC strains while C2 only against S. aureus ATCC 25923. Streptomyces griseus ATCC 10137 was included in the later experiment and showed antibacterial activity against both ATCC strains. Subsequently, the two isolates were identified by PCR/sequencing techniques and phylogenetic analysis to be Streptomyces species (>93% homology based on 16S rRNA and rpoB genes). Characterization on cultural characteristic and viable count at different temperatures (37ºC and 28ºC), on different microbiological media (AIA, ISP-2, MHA, NA, PDA and TSA), were performed. More morphological features were observed on ISP-2 for both isolates. A higher growth yield was also observed at 28ºC in all media but in comparing that between the two isolates, isolate B8 outnumbered C2 at all experimental conditions. The observed variation in cultural traits and growth yield indicate unique properties between the two antibiotic-producing isolates.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*
  7. Jafarzade M, Yahya NA, Shayesteh F, Usup G, Ahmad A
    J Microbiol, 2013 Jun;51(3):373-9.
    PMID: 23812818 DOI: 10.1007/s12275-013-2440-2
    This study was undertaken to investigate the influence of culture conditions and medium components on production of antibacterial compounds by Serratia sp. WPRA3 (JX020764) which was isolated from marine water of Port Dickson, Malaysia. Biochemical, morphological, and molecular characteristics suggested that the isolate is a new candidate of the Serratia sp. The isolate showed strong antimicrobial activity against fungi, Gram-negative and Gram-positive bacteria. This bacterium exhibited optimum antibacterial compounds production at 28°C, pH 7 and 200 rev/min aeration during 72 h of incubation period. Highest antibacterial activity was obtained when sodium chloride (2%), yeast extract (0.5%), and glucose concentration (0.75%) were used as salt, nitrogen, and carbon sources respectively. Different active fractions were obtained by Thin-Layer Chromatography (TLC) and Flash Column Chromatography (FCC) from ethyl acetate crude extracts namely OCE and RCE in different culture conditions, OCE (pH 5, 200 rev/min) and RCE (pH 7/without aeration). In conclusion, the results suggested different culture conditions have a significant impact on the types of secondary metabolites produced by the bacterium.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*
  8. Wei W, Jiang N, Mei YN, Chu YL, Ge HM, Song YC, et al.
    Phytochemistry, 2014 Apr;100:103-9.
    PMID: 24529576 DOI: 10.1016/j.phytochem.2014.01.003
    In searching for symbionts derived from bioactive natural products, six sulfureous diketopiperazines designated as lasiodiplines A-F (1-6) were characterized from the culture of Lasiodiplodia pseudotheobromae F2, previously residing in the apparently normal flower of Illigera rhodantha (Hernandiaceae). Identification of structures was accomplished by a combination of spectroscopic and computational approaches, in conjunction with the low-temperature (100K) single-crystal X-ray diffraction with Cu Kα radiation. Lasiodipline E (5) was demonstrated to be antibacterial against the clinical strains Streptococcus sp., Bacteroides vulgates, Peptostreptococcus sp. and Veillonella parvula, respectively, with an minimum inhibitory concentration (MIC) range of 0.12-0.25 μg/mL. In addition, compounds 4 and 6 exemplify two unusual architectures of natural cyclodipeptides, signifying the unique biochemical characteristics of the producing fungus.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*
  9. Lim CL, Nogawa T, Uramoto M, Okano A, Hongo Y, Nakamura T, et al.
    J Antibiot (Tokyo), 2014 Apr;67(4):323-9.
    PMID: 24496142 DOI: 10.1038/ja.2013.144
    Two novel quinomycin derivatives, RK-1355A (1) and B (2), and one known quinomycin derivative, UK-63,598 (3), were isolated from a microbial metabolites fraction library of Streptomyces sp. RK88-1355 based on Natural Products Plot screening. The structural elucidation of 1 and 2 was established through two-dimensional NMR and mass spectrometric measurements. They belong to a class of quinomycin antibiotics family having 3-hydroxyquinaldic acid and a sulfoxide moiety. They are the first examples for natural products as a quinoline type quinomycin having a sulfoxide on the intramolecular cross-linkage. They showed potent antiproliferative activities against various cancer cell lines and they were also found to exhibit moderate antibacterial activity.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism
  10. Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Yari Khosroushahi A
    J Appl Microbiol, 2014 Aug;117(2):498-508.
    PMID: 24775273 DOI: 10.1111/jam.12531
    This study aimed to describe probiotic properties and bio-therapeutic effects of newly isolated Enterococcus faecalis from the human vaginal tract.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism
  11. Abbas SZ, Riaz M, Ramzan N, Zahid MT, Shakoori FR, Rafatullah M
    Braz J Microbiol, 2014;45(4):1309-15.
    PMID: 25763035
    The present study proposed the isolation of arsenic resistant bacteria from wastewater. Only three bacterial isolates (MNZ1, MNZ4 and MNZ6) were able to grow in high concentrations of arsenic. The minimum inhibitory concentrations of arsenic against MNZ1, MNZ4 and MNZ6 were 300 mg/L, 300 mg/L and 370 mg/L respectively. The isolated strains showed maximum growth at 37 °C and at 7.0 pH in control but in arsenite stress Luria Bertani broth the bacterial growth is lower than control. All strains were arsenite oxidizing. All strains were biochemically characterized and ribotyping (16S rRNA) was done for the purpose of identification which confirmed that MNZ1 was homologous to Enterobacter sp. while MNZ4 and MNZ6 showed their maximum homology with Klebsiella pneumoniae. The protein profiling of these strains showed in arsenic stressed and non stressed conditions, so no bands of induced proteins appeared in stressed conditions. The bacterial isolates can be exploited for bioremediation of arsenic containing wastes, since they seem to have the potential to oxidize the arsenite (more toxic) into arsenate (less toxic) form.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*
  12. Wang Y, Chen G, Liang J, Zou Y, Wen X, Liao X, et al.
    Environ Sci Pollut Res Int, 2015 Dec;22(23):18469-76.
    PMID: 26278905 DOI: 10.1007/s11356-015-5170-7
    Using manure collected from swine fed with diet containing antibiotics and antibiotic-free swine manure spiked with antibiotics are the two common methods of studying the degradation behavior of veterinary antibiotic in manure in the environment. However, few studies had been conducted to co-compare these two different antibiotic addition methods. This study used oxytetracycline (OTC) as a model antibiotic to study antibiotic degradation behavior in manure under the above two OTC addition methods. In addition, the role of microorganisms present in the manure on degradation behavior was also examined. The results showed that degradation half-life of OTC in manure from swine fed OTC (9.04 days) was significantly shorter than that of the manure directly treated with OTC (9.65 days). Concentration of 4-epi-OTC in manure from swine fed OTC peaked earlier than that in manure spiked with OTC, and the degradation rates of 4-epi-OTC and α-apo-OTC in the manure from swine fed OTC were faster, but the peak concentrations were lower, than those in manure spiked with OTC. Bacterial diversity and relative abundance of Bacillus cereus data demonstrated that sterilization of the manure before experiment significantly decreased OTC degradation rate in both of the addition methods. Results of the present study demonstrated that the presence of the metabolites (especially 4-epi-OTC) and microorganisms had significant influence on OTC degradation.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism
  13. Younis KM, Usup G, Ahmad A
    Environ Sci Pollut Res Int, 2016 Mar;23(5):4756-67.
    PMID: 26538254 DOI: 10.1007/s11356-015-5687-9
    Quorum-sensing regulates bacterial biofilm formation and virulence factors, thereby making it an interesting target for attenuating pathogens. In this study, we investigated anti-biofilm and anti-quorum-sensing compounds from secondary metabolites of halophiles marine streptomyces against urinary catheter biofilm forming Proteus mirabilis without effect on growth viability. A total of 40 actinomycetes were isolated from samples collected from different places in Iraq including marine sediments and soil samples. Fifteen isolates identified as streptomyces and their supernatant screened as anti-quorum-sensing by inhibiting quorum-sensing regulated prodigiosin biosynthesis of Serratia marcescens strain Smj-11 as a reporter strain. Isolate Sediment Lake Iraq (sdLi) showed potential anti-quorum-sensing activity. Out of 35 clinical isolates obtained from Urinary catheter used by patient at the Universiti Kebangsaan Malaysia Medical Center, 22 isolates were characterized and identified as Proteus mirabilis. Isolate Urinary Catheter B4 (UCB4) showed the highest biofilm formation with highest resistance to used antibiotic and was chosen for further studies. Ethyl acetate secondary metabolites extract was produced from sdLi isolate. First, we determined the Minimum Inhibitory Concentration (MIC) of sdLi crude extract against UCB4 isolate, and all further experiments used concentrations below the MIC. Tests of subinhibitory concentrations of sdLi crude extract showed good inhibition against UCB4 isolate biofilm formation on urinary catheter and cover glass using Scanning electron microscopy and light microscopy respectively. The influence of sub-MIC of sdLi crude extract was also found to attenuate the quorum sensing (QS)-dependent factors such as hemolysin activity, urease activity, pH value, and motility of UCB4 isolate. Evidence is presented that these nontoxic secondary metabolites may act as antagonists of bacterial quorum sensing by competing with quorum-sensing signals for receptor binding.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*
  14. Majeed S, Abdullah MS, Dash GK, Ansari MT, Nanda A
    Chin J Nat Med, 2016 Aug;14(8):615-20.
    PMID: 27608951 DOI: 10.1016/S1875-5364(16)30072-3
    Biosynthesis of silver and other metallic nanoparticles is one of the emerging research area in the field of science and technology due to their potentiality, especially in the field of nano-biotechnology and biomedical sciences in order to develop nanomedicine. In our present study, Penicillium decumbens (MTCC-2494) was brought from Institute of Microbial Technology (IMTECH) Chandigarh and employed for extracellular biological synthesis of silver nanoparticles. Ag-NPs formation was appeared with a dark brown color inside the conical flask. Characterization of Ag-NPs were done by UV-Spectrophotometric analysis which showed absorption peak at 430 nm determines the presence of nanoparticles, Fourier transform infrared (FT-IR) spectroscopic analysis, showed amines and amides are the possible proteins involved in the stabilization of nanoparticles as capping agent. Atomic force Microscopy (AFM) confirmed the particle are spherical, size was around 30 to 60 nm and also the roughness of nanoparticles. Field emission scanning electron microscopy (FE-SEM) showed the topology of the nanoparticles and were spherical in shape. The biosynthesis process was found fast, ecofriendly and cost effective. Nano-silver particle was found to have a broad antimicrobial activity and also it showed good enhancement of antimicrobial activity of Carbenicillin, Piperacillin, Cefixime, Amoxicillin, Ofloxacin and Sparfloxacin in a synergistic mode. These Ag-NPs showed good anti-cancer activity at 80 μg·mL(-1)upon 24 hours of incubation and toxicity increases upon 48 hours of incubation against A-549 human lung cancer cell line and the synergistic formulation of the antibiotic with the synthesized nanoparticles was found more effective against the pathogenic bacteria studied.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism
  15. Aldahoun MA, Jaafar MS, Al-Akhras MH, Bououdina M
    Artif Cells Nanomed Biotechnol, 2017 Jun;45(4):843-853.
    PMID: 27137748 DOI: 10.1080/21691401.2016.1178137
    Curcumin is more soluble in ethanol, dimethylsulfoxide, methanol and acetone than in water. In this study, nanocurcumin combined with 8 mT AC static magnetic field was used to enhance cellular uptake, bioavailability, and ultimate efficiency of curcumin against prostate cancer cell line (PC3), four bacteria strains (two Gram positive: Micrococcus luteus ATCC 9341, Staphylococcus aureus ATCC 29213 and two Gram negative: Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853), mammalian cell line (HEK) and human erythrocytes (RBC). The efficiency (E%) between IC50 of nanocurcumin combined with magnetic field (NANOCUR-MF) and control against PC3 was 35.93%, which is three times higher compared to curcumin combined with magnetic field (CUR-MF); i.e., 10.77%. However, their E% against HEK was not significant; 1.4% for NANOCUR-MF and 1.95% for CUR-MF. Moreover, depending in minimum bacterial concentration (MBC), the use of MF leads to a reduction of MBCs for all tested bacteria compared with control. The obtained results established the applicability of (MF) in enhancing cellular uptake for PC3 and tested bacteria strains by increasing the penetration of drug (nanocurcumin and parent curcumin) into cell with fixing mild cytotoxic profile for HEK and RBC.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism
  16. Akbar N, Siddiqui R, Iqbal M, Sagathevan K, Khan NA
    Lett Appl Microbiol, 2018 May;66(5):416-426.
    PMID: 29457249 DOI: 10.1111/lam.12867
    Here, we hypothesized that the microbial gut flora of animals/pests living in polluted environments, produce substances to thwart bacterial infections. The overall aim of this study was to source microbes inhabiting unusual environmental niches for potential antimicrobial activity. Two cockroach species, Gromphadorhina portentosa (Madagascar) and Blaptica dubia (Dubia) were selected. The gut bacteria from these species were isolated and grown in RPMI 1640 and conditioned media were prepared. Conditioned media were tested against a panel of Gram-positive (Methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, Bacillus cereus) and Gram-negative (Escherichia coli K1, Salmonella enterica, Serratia marcescens, Pseudomonas aeruginosa, Klebsiella pneumoniae) bacteria, as well as the protist pathogen, Acanthamoeba castellanii. The results revealed that the gut bacteria of cockroaches produce active molecule(s) with potent antibacterial properties, as well as exhibit antiamoebic effects. However, heat-inactivation at 95°C for 10 min had no effect on conditioned media-mediated antibacterial and antiamoebic properties. These results suggest that bacteria from novel sources i.e. from the cockroach's gut produce molecules with bactericidal as well as amoebicidal properties that can ultimately lead to the development of therapeutic drugs.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The bacteria isolated from unusual dwellings such as the cockroaches' gut are a useful source of antibacterial and antiamoebal molecules. These are remarkable findings that will open several avenues in our search for novel antimicrobials from unique sources. Furthermore studies will lead to the identification of molecules to develop future antibacterials from insects.

    Matched MeSH terms: Anti-Bacterial Agents/metabolism
  17. Perveen S, Safdar N, Chaudhry GE, Yasmin A
    World J Microbiol Biotechnol, 2018 Jul 14;34(8):118.
    PMID: 30008019 DOI: 10.1007/s11274-018-2500-1
    This paper describes the extracellular synthesis of silver nanoparticles from waste part of lychee fruit (peel) and their conjugation with selected antibiotics (amoxicillin, cefixim, and streptomycin). FTIR studies revealed the reduction of metallic silver and stabilization of silver nanoparticles and their conjugates due to the presence of CO (carboxyl), OH (hydroxyl) and CH (alkanes) groups. The size of conjugated nanoparticles varied ranging from 3 to 10 nm as shown by XRD. TEM image revealed the spherical shape of biosynthesized silver nanoparticles. Conjugates of amoxicillin and cefixim showed highest antibacterial activity (147.43 and 107.95%, respectively) against Gram-negative bacteria i.e. Alcaligenes faecalis in comparison with their control counterparts. The highest reduction in MIC was noted against Gram-positive strains i.e. Enterococcus faecium (75%) and Microbacterium oxydans (75%) for amoxicillin conjugates. Anova two factor followed by two-tailed t test showed non-significant results both in case of cell leakage and protein estimation between nanoparticles and conjugates of amoxicillin, cefixime and streptomycin. In case of MDA release, non-significant difference among the test samples against the selected strains. Our study found green-synthesized silver nanoparticles as effective antibacterial bullet against both Gram positive and Gram negative bacteria, but they showed a more promising effect on conjugation with selected antibiotics against Gram negative type.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*
  18. Le VT, Leelakriangsak M, Lee SW, Panphon S, Utispan K, Koontongkaew S
    Braz J Microbiol, 2019 Jan;50(1):33-42.
    PMID: 30637641 DOI: 10.1007/s42770-018-0014-5
    Antibacterial activity of cell-free supernatant from Escherichia coli E against selected pathogenic bacteria in food and aquaculture was the highest against Edwardsiella tarda 3, a significant aquaculture pathogen. Biochemical properties of the bacteriocins were studied and bacteriocin was found to be sensitive to proteinase K, demonstrating its proteinaceous nature. In addition, pH and temperature affected bacteriocin activity and stability. The bacteriocins were partially purified by ammonium sulfate precipitation. The antibacterial activity was only detected in 20% ammonium sulfate fraction and direct detection of its activity was performed by overlaying on the indicator strains. The inhibition zone associated with the antibacterial activity was detected in the sample overlaid by E. tarda 3 and Staphylococcus aureus DMST8840 with the relative molecular mass of about 27 kDa and 10 kDa, respectively. Bacteriocin showed no cytotoxic effect on NIH-3T3 cell line; however, two virulence genes, aer and sfa, were detected in the genome of E. coli E by PCR. The characteristics of bacteriocins produced by E. coli E exhibited the antibacterial activity against both Gram-positive and Gram-negative pathogenic bacteria and the safe use determined by cytotoxicity test which may have interesting biotechnological applications.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*
  19. Yip CH, Yarkoni O, Ajioka J, Wan KL, Nathan S
    Appl Microbiol Biotechnol, 2019 Feb;103(4):1667-1680.
    PMID: 30637495 DOI: 10.1007/s00253-018-09611-z
    Prodigiosin, a red linear tripyrrole pigment and a member of the prodiginine family, is normally secreted by the human pathogen Serratia marcescens as a secondary metabolite. Studies on prodigiosin have received renewed attention as a result of reported immunosuppressive, antimicrobial and anticancer properties. High-level synthesis of prodigiosin and the bioengineering of strains to synthesise useful prodiginine derivatives have also been a subject of investigation. To exploit the potential use of prodigiosin as a clinical drug targeting bacteria or as a dye for textiles, high-level synthesis of prodigiosin is a prerequisite. This review presents an overview on the biosynthesis of prodigiosin from its natural host Serratia marcescens and through recombinant approaches as well as highlighting the beneficial properties of prodigiosin. We also discuss the prospect of adopting a synthetic biology approach for safe and cost-effective production of prodigiosin in a more industrially compliant surrogate host.
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*
  20. Al-Gheethi A, Noman E, Radin Mohamed RMS, Ismail N, Bin Abdullah AH, Mohd Kassim AH
    J Hazard Mater, 2019 03 05;365:883-894.
    PMID: 30497042 DOI: 10.1016/j.jhazmat.2018.11.068
    Biodegradation of pharmaceuticals active compounds (PACs) in secondary effluents by using B. subtilis 2012WTNC as a function of β-lactamase was optimized using response surface methodology (RSM) designed by central composite design (CCD). Four factors including initial concentration of bacteria (1-6 log10 CFU mL-1), incubation period (1-14 days), incubation temperature (20-40 °C) and initial concentration of PACs (1-5 mg L-1) were investigated. The optimal operating factors for biodegradation process determined using response surface methodology (RSM) was recorded with 5.57 log10 CFU mL-1 of B. subtilis, for 10.38 days, at 36.62 °C and with 4.14 mg L-1 of (cephalexin/amoxicillin) with R2 coefficient of 0.99. The biodegradation was 83.81 and 93.94% respectively. The relationship among the independent variables was significant (p 
    Matched MeSH terms: Anti-Bacterial Agents/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links